LIMITATIONS OF METAMATERIALS FOR INVISIBILITY CLOAKING

Authors

  • Sikder Sunbeam Islam Space Science Centre (ANGKASA), University of Kebangsaan Malaysia, 43600 UKM Bangi Selangor, Malaysia
  • Mohammad Rashed Iqbal Faruque Space Science Centre (ANGKASA), University of Kebangsaan Malaysia, 43600 UKM Bangi Selangor, Malaysia
  • Mohammad Jakir Hossain Space Science Centre (ANGKASA), University of Kebangsaan Malaysia, 43600 UKM Bangi Selangor, Malaysia
  • Mohammad Tariqul Islam Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia,43600 UKM Bangi, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.9138

Keywords:

Cloaking, invisibility, metamaterials

Abstract

Electromagnetic invisibility cloak (hide) has begun a new period in the scientific community. With the advent of metamaterials and its recent developments, researchers have now turned their faces to invisibility cloak.  Metamaterials are man-made materials that have surprising electromagnetic property and it may show the characteristics of negative refractive index in materials that are normally not found in nature in any material. These exotic properties of metamaterial have opened up new possibilities for invisibility and other electromechanical fields. However, although metamaterials have created the field for invisibility cloaking but it has some limitations as well. Specially, constructing a perfect invisibility cloak in the visible range using metamaterials is still a big issue. In this paper, we have focused the limitations of metamaterial for invisibility cloaking beside basic principle of metamaterials and contributions in cloaking.

References

Veselago, V. G. 1968. The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ. Soviet Physics Usp..10: 509–514.

Pendry, J.B. and Smith, D.R. 2004. Reversing Light: Negative Refraction. Physics Today. 57: 37-43.

Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F. and Smith, D.R., 2006. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science. 314: 977-979.

Wood, B. and Pendry, J.B. 2007. Metamaterials at zero Frequency. Journal of Physics: Condensed Matter. 19(076208): 1-9.

Faruque, M. R. I., Islam, M. T. and Misran, N. 2011. Electromagnetic (EM) Absorption Reduction in a Muscle Cube with Metamaterial Attachment. Medical Engineering and Physics . 33: 646-652.

Faruque, M. R. I., Islam, M. T., and Misran, N. 2011. Analysis of Electromagnetic Absorption in the Mobile Phones Using Metamaterials, Electromagnetics Journal (Taylor & Francis Group). 31: 215-232.

Wu, B. I, Wang, W., Pacheco, J., Chen, X., Grzegorczyk, T. and Kong, J. A 2005. A Study of Using Metamaterials as Antenna Substrate to Enhance Gain. Progress In Electromagnetics Research. 51: 295-328.

Marques, R., Martin, F. and Sorolla, M. 2008. Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, Wiley-Interscience, Hoboken, John Wiley and Sons.

The homepage of METAMORPHOSE, http://www. Metamor phose-vi.org

Shelby, R. A., Smith, D. R. and Schultz, S. 2001. Experimental Verification of a Negative Index of Refraction, Science. 292: 77-79.

Pendry, J. B., Holden, A. J., Stewart, W. J. and Youngs, I. 1996. Extremely Low Frequency Plasmons In Metallic Mesostructures. Physical Review Letters. 76: 4773–4776.

Ekmekci, E. and Turhan-Sayan, G. 2009. A Novel Dual-band Metamaterial Structure, Progress In Electromagnetics Research Symposium Proceedings, Moscow, Russia, August 2009. 18-21.

Chen, H., Ran, L., Huangfu, J., Zhang, X., Chen, K., Grzegorczyk, T. M. and Kong, J. A. 2004. Left Handed Metamaterials Composed of only S-Shaped Resonators, Physical Review E. 70:057605.

Gallas, B., Robbie, K., Abdeddaïm, M., Guida, G., Yang, J. Rivory, J. and Priou, A. 2010. Silver Square Nanospirals Mimic Optical Properties Of U-Shaped Metamaterialsâ€. Optics Express. 18: 16335-16344.

Islam, S. S., Faruque, M. R. I. and Slam, M. T. I. 2014. Design and Analysis of a New Double Negative Metamaterial; Journal of Microelectronics. Electronic Components and Materials. 44(3): 218 – 223.

Islam, S. S., Faruque, M. R. I. and Slam, M. T. I. 2014. Design and Analyses of a Novel Split-H-Shaped Metamaterial for Multi-Band Microwave Applications. Materials. 7: 4994-5011.

Islam, S.S., Faruque, M.R.I. and Slam, M.T.I. 2015. Design and absorption analysis of a new multiband split-S-shaped metamaterial. Science and Engineering of Composite Materials. Article in press; DOI: 10.1515/secm-2014-0376

Alù, A. and Engheta, N. 2006. Erratum: Achieving Transparency With Plasmonic and Metamaterial Coatings. Physical Review E. 73:019906.

Pendry, J.B., Schurig, D. and Smith, D.R. 2006. Controlling Electromagnetic Fields. Science. 312: 1780-1782.

Alitalo, P. and Tretyakov, S. 2009. Electromagnetic Cloaking with Metamaterials. Materials Today. 12: 22–29.

Kerker, M. 1975. Invisible bodies, Journal of Optical Society of America. 65(4): 376–379.

Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., and Schultz, S. 2000. Composite Medium with Simultaneously Negative Permeability and Permittivity. Physical Review Letters. 84: 4184-4187.

Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F. and Smith, D. R. 2006. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science. 314: 977-980.

Chen, H. and Chan, C. T. 2007. Acoustic Cloaking in Three Dimensions Using Acoustic Metamaterials. Applied Physics Letters. 91(18): 183518.

Tao, Hu, Landy, N.I., Fan, K., Strikwerda, A.C., Padilla, W.J., Averitt, R.D., and Zhang, X. 2008. Flexible Terahertz Metamaterials: Towards a Terahertz Metamaterial Invisible cloak. Technical Digest – International Electron Devices Meeting, IEDM, San Francisco,USA December, 2008, 4796673.

Bilotti, F., Tricarico, S. and Vegni, L. 2010. Plasmonic Metamaterial Cloaking at Optical Frequencies. IEEE Transactions on Nanotechnology. 9: 45-61.

Pei-Ning, L., You-Wen, L., Yun-Ji, M. and Min-Jun, Z. 2011. A Multifrequency Cloak with a Single Shell of Negative Index Metamaterials. Chinese Physics Letters. 28(6): 064206.

Shin, D., Urzhumov, Y., Jung, Y., Kang, G., Baek, S., Chol, M., Park, H., Kim, K. and Smith, D.R. 2012, Broadband Electromagnetic Cloaking With Smart Metamaterials. Nature Communications. 3(1213): 1-8.

DOI:10.1038/ncomms2219.

landy, N. and Smith, D.R. 2013. A Full Parameter Unidirectional Metamaterial Cloak for Microwave. Nature Materials. 12: 25-28.

Matekovits, L. and Bird, T. S. 2014. Width-Modulated Microstrip-Line Based Mantle Cloak for Thin Single and Multiple Cylinders. IEEE Transactions on Antennas and Propagation. 62: 2606–2615.

Islam, S. S., Faruque, M. R. I. and Islam, M. T. 2015. A Near Zero Refractive Index Metamaterial for Electromagnetic Invisibility Cloaking Operation. Materials. 8: 4790-4804.

DOI: 10.3390/ma8084790

Islam, S. S., Faruque, M. R. I. and Islam, M. T. 2015. A Two-Component NZRI Metamaterial Based Rectangular Cloak. AIP Advances. 5(107116): 1-9.

Downloads

Published

2016-06-21

How to Cite

LIMITATIONS OF METAMATERIALS FOR INVISIBILITY CLOAKING. (2016). Jurnal Teknologi, 78(6-9). https://doi.org/10.11113/jt.v78.9138