SELF-CLEANING TiO2-SiO2 CLUSTERS ON COTTON TEXTILE PREPARED BY DIP-SPIN COATING PROCESS
DOI:
https://doi.org/10.11113/jt.v78.9165Keywords:
Self-cleaning, methylene blue, dip-spin coatingAbstract
Titanium-silica (TiO2-SiO2), a type of semiconductor metal oxide cluster compound, has been widely used as oxidative catalysts and dye agents. In this research, TiO2-SiO2 on cotton textile has been utilized as self-cleaning agents by cross linking with acrylic acid compound. The clusters of TiO2-SiO2 was modified by a series of Ti:Si molar compositions, i.e. 1:1; 2:1 and 1:2. The successful modification of the cotton textile’s fiber surface was confirmed with an increase in mass. The FTIR spectra displayed an intense peak at 1700 cm–1, indicating the presence of carboxyl functional groups for both the coated cottons with and without TiO2-SiO2 coating. SEM-EDX characterization showed that the TiO2-SiO2 clusters was homogeneously distributed on the cotton. The self-cleaning performance of TiO2-SiO2 coated cotton textile was evaluated in the degradation of methylene blue (MB) dye and examined with UV light (120 min). Results showed that TiO2-SiO2 coated cotton with Ti:Si molar ratio of 1:2, which was prepared by dip-spin coating in acrylic acid with 24 h of soaking time, achieved the best self-cleaning effect in the degradation of methylene blue.
References
Senic, Z., S. Bauk, M. Vitorović-Todorović, N. Pajić, A. Samolov, D. Raji. 2011. Application of TiO2 Nanoparticles For Obtaining Self-Decontaminating Smart Textiles. Scientific Technical Review. 61: 63-72.
Belladirta, M., M. Adammo, A. DiPaola, G. Marci, L. Palmisano, L. Cassar, M. Borsa. 2010. Photocatalytic Activity of TiO2/SiO2 Systems. Journal of Hazardous Material. 174: 707-713.
Linsebigler, A. L., L. Gunangguan, J. T. Yates. 1995. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms And Selected Results. Chemical Reviews. 95: 735-758.
Rilda, Y., A. Alif, E. Munaf, A. Agustien. 2014. Effects Of Molar Ratio On The Synthesis And Characterization Clusters TiO2-SiO2 With Induced Copolymer Chitosan By Sol – Gel. Journal of Pharmaceutical Biological and Chemical Sciences. 5: 1417-1427.
Rilda, Y., A. Alif, E. Munaf, B. Salleh, S. Krista. 2015. Effects of Doped Dodecyl Trimethyl Ammonium Bromide (DTAB) Surfactant On Synthesis And Performance Of Nanoporous TiO2-SiO2/Chitosan. Asian Journal of Chemistry. 27: 3983-3987.
Rilda, Y., S. Kurniawan, S. Arif. 2015. Synthesis And Modification Of The Morphology Of Zinc Oxide (ZnO) Nanoparticles With Induced Biopolymer Chitosan. Journal of Pharmaceutical, Biological and Chemical Sciences. 6: 1511-1518.
Parham, S., S. Chandren, D. H. B. Wicaksono, S. Bagherbaigi, S. L Lee, L. S. Yuan, H. Nur. 2016. Textile/Al2O3-TiO2 Nanocomposites As An Antimicrobial And Radical Scavenger Wound Dressing. RSC Advances. 6: 8188-8197.
Pirkanniemi, K., M. Sillanp. 2002. Heterogeneous Water Phase Catalysis As An Environmental Application: A Review. Chemosphere. 48: 1047-1060.
Karimi, L., M. Mirjalili, M. E. Yazdanshenas, A. Nazari. 2010. Effect of Nano Tio2 On Self Cleaning Property Of Cross Linking Cotton Fabric With Succinic Acid Under UV Irradiation. Journal of Photochemistry and Photobiology. 86: 1030-1037.
Ramin, K., A. Berendjchi. 2010. Effect of Dicarboxylic Acid Chain Length On The Self-Cleaning Property Of Nano-Tio2- Coated Cotton Fabrics. ACS Applied Material and Interfaces. 6: 18795-18799.
Meilert, K. T., D. Laub, J. Kiwi. 2005. Photocatalytic Self-Cleaning Of Modified Cotton Textiles By TiO2 Clusters Attached By Chemical Spacers. Journal of Molecular Catalysis A: Chemical. 37: 101-108.
Rilda, Y., S. Arif, A. Alif, D. V. Welia, V. Delfinas, E. Maharani. 2015. Synergistic Effect Of Coating TiO2-SiO2 Clusters And Acrylate Acid On Cotton Textiles As Antibacterial. Journal of Chemical and Pharmaceutical Research. 7: 454-461.
Galkina, O. L., A. Sycheva, Blagodatskiy, G. Kaptay, V. L. Katanaev, G. A. Seisenbaeva, V. G. Kessler, A. V. Agafonov. 2014. The Sol–Gel Synthesis Of Cotton/Tio2 Composites And Their Antibacterialproperties. Journal of Surface and Coating Technology. 253: 171-179.
Patra, J. K., S. Gouda. Application of Nanotechnology in Textile Engineering. 2013. Journal of Engineering and Technology Research. 5: 104-111.
Roya, D., M. Montazer. 2010. A Review On The Application Of Inorganic Nano-Structured Materials In Themodification Of Textiles: Focus On Anti-Microbial Properties. Colloids and Surfaces B: Biointerfaces. 79: 5-18.
Arain, R. Almas, Z. Khatri, M. Hanif Memon, I. S. Kim. 2013. Antibacterial Property And Characterization Of Cotton Fabric Treated With Chitosan/AgCl–TiO2 Colloid. Carbohydrate Polymers. 96: 326-331.
Nazari, A., M. Montazer, M. B. Moghadam, M. Anary-Abbasineja. 2011. Self-Cleaning Properties Of Bleached And Cationized Cotton Using Nano TiO2: A Statistical Approach. Carbohydrate Polymers. 83: 1119-1127.
Sivakumar, A., R. Murugan, K. Sundaresan, s. Periyasamy. 2013. UV Protection And Self-Cleaning Finish For Cotton Fabric Using Metal Oxide Nanoparticles. Indian Journal of Fibre and Textille Research. 38: 285-292.
Ming, Y., Z. Wang, H. Liu, S. Xie, J. Wu, H. Jiang, H. Zhang, J. Li, J. Li. 2013. Laundering Durability Of Photocatalyzed Self-Cleaning Cotton Fabric With TiO2 Nanoparticles Covalently Immobilized. ACS Applied Materials and Interfaces. 5: 3697-3703
Wu, D., M. Long, J. Zhou, W. Cai, X. Zhu, C. Chen, Y. Wu. 2009. Synthesis And Characterization Of Self-Cleaning Cotton Fabrics Modified By TiO2 Through A Facile Approach. Surface and Coatings Technology. 203: 3728-3733.
Wang, S., T. Wang, Y. Ding, Q. Su, Y. Xu, Z. Xu, G. Jiang, W. Chen. 2013. Air-Water Interface Photocatalysis: A Realizable Approach For Decomposition Of Aqueous Organic Pollutants. Science of Advanced Materials. 5: 1006-1012.
Wu, D., L. Wang, X. Song, Y. Tan. 2013. Enhancing The Visible-Light-Induced Photocatalytic Activity Of The Self-Cleaning TiO2-coated Cotton By Loading Ag/AgCl Nanoparticles. Thin Solid Films. 540: 36-40.
Zohori, S., L. Karimi, A. Nazari. 2014. Photocatalytic Self-Cleaning Synergism Optimization Of Cotton Fabric Using Nano SrTiO3 and Nano TiO2. Fibres and Textiles in Eastern Europe. 2: 91-95.
Chaudari, S. B., A. A. Mandot, B. H. Patel. 2014. Effect of Nano TiO2 Pretreatment On Functional Properties Of Cotton Fabric. International Journal of Engineering Research and Development. 1: 24-29.
Palamutcu, S., A. Gülümser, A. H. Çon, T. Gültekina, B. Aktanc, H. Selçukc. 2013. Innovative Self-Cleaning And Antibacterial Cotton Textile: No Water And No Detergent For Cleaning. Desalination and Water Treatment. 26: 78-184.
} Pakdel, E., W. A. Daoud, X. Wang. 2013. Self-Cleaning And Superhydrophilic Wool By TiO2-SiO2 Nanocomposite. Applied Surface Science. 275: 397-402.
Pakdel, E., W.A. Daoud. 2013. Self-Cleaning Cotton Functionalized With TiO2/SiO2: Focus On The Role Of Silica. Journal of Colloid and Interfaces Science. 401: 1-7.
Yuranova, T. R. Mosteo, J. Bandara, D. Laub, J. Kiwi. Self-Cleaning Cotton Textiles Surface And Modified By Photoactive SiO2/TiO2 Coating. 2006. Journal of Molecular Catalysis A: Chemical. 244: 160-167.
Qian, T., H. Su., T. Ta. 2011. The Bactericidal and Mildew-proof Activity of a TiO2–Chitosan Composite. Journal of Photochemistry and Photobiology A: Chemistry. 218: 130-136.
Sami R., R. Sanjines, M. Andrzejczuk, C. Pulgarin, A. Kulik, J. Kiwi. 2014. Innovative Transparent Non-Scattering Tio2 Bactericide Thin Films Inducing Increased E. Coli Cell Wall Fluidity. Surface and Coatings Technology. 254: 333-343.
Houas, A., H. Lascheb, M. Kishbi, E. Elaloui, C. Guillard, J Herrmann. 2001. Photocatalytic Degradation Pathway Of Methylene Blue In Water. 2001. Applied Catalysis B: Environmental: 31: 145-157.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.