UWB CHANNEL CHARACTERIZATION IN 28 GHZ MILLIMETER WAVEBAND FOR 5G CELLULAR NETWORKS

Authors

  • Ahmed M. Al-Samman Wireless Communication Centre, Universiti Teknologi Malaysia, 81310 81310 UTM Johor Bahru, Johor, Malaysia
  • Tharek A. Rahman Wireless Communication Centre, Universiti Teknologi Malaysia, 81310 81310 UTM Johor Bahru, Johor, Malaysia
  • Razali Ngah Wireless Communication Centre, Universiti Teknologi Malaysia, 81310 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.9176

Keywords:

UWB channel, mm-wave, 5G, RMS delay spread, WINNER model

Abstract

The demands of high data rate transmission for future wireless communication technologies are increasing rapidly. The current bands for cellular network will not be able to satisfy these requirements. The millimeter wave (mm-wave) bands are the candidate bands for the future cellular networks. The 28 GHz band is the strongest candidate for 5G cellular networks. The large bandwidth at this band is one of the main parameters that make the mm-wave bands promising candidate for the future cellular networks. To know the wideband channel behavior in mm-wave bands, the wideband channel characterizations are required. In this paper, the 3D WINNER model is used to model the wideband channel at 28 GHz band. Based on this model, the time dispersion parameters at 28 GHz mm-wave band are investigated. The root mean square delay spread and the mean excess delay are the main parameters that can be used to characterize the wideband channel. Morever, the cumulative distribution function (CDF) is used to model the RMS delay spreads. The results show that the RMS delay spread varies between 4.1 ns and 443.7 ns.

References

UMTS Forum. 2011. Mobile Traffic Forecasts 2010-2020. UMTS Forum Rep 2011. 44.

Akyildiz, I. F., Gutierrez-Estevez, D. M., Balakrishnan, R., Chavarria-Reyes, E. 2014. LTE-Advanced and the Evolution to Beyond 4G (B4G) Systems. Phys Commun. 10: 31-60. doi:10.1016/j.phycom.2013.11.009.

Lee, J., Han, J-K., Zhang, J. 2009. MIMO Technologies in 3GPP LTE and LTE-Advanced. EURASIP J Wirel Commun Netw. 2009: 302092. doi:10.1155/2009/302092.

Ghosh, A., Thomas, T. A., Cudak, M. C., Ratasuk, R., Moorut, P., Vook, F. W., et al. 2014, Millimeter-Wave Enhanced Local Area Systems: A High-Data-Rate Approach for Future Wireless Networks. IEEE J Sel Areas Commun. 32: 1152-63. doi:10.1109/JSAC.2014.2328111.

Rangan, S., Rappaport, T. S., Erkip, E. 2014. Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges. Proc IEEE. 102: 366-85. doi:10.1109/JPROC.2014.2299397.

Akdeniz, M. R., Liu, Y., Samimi, M. K., Sun, S., Rangan, S., Rappaport, T. S., et al. 2014. Millimeter Wave Channel Modeling and Cellular Capacity Evaluation. IEEE J Sel Areas Commun. 32: 1164-79. doi:10.1109/JSAC.2014.2328154.

Mitola, J., Guerci, J., Reed, J., Clancy, T., Dwyer, J., McGwier, R. 2014. Accelerating 5G QoE via Public-Private Spectrum Sharing. IEEE Commun Mag. 52: 77-85. doi:10.1109/MCOM.2014.6815896.

Rappaport, T. S., Mayzus, R., Azar, Y., Wang, K., Wong, G. N., Schulz, J. K., et al. 2013. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! IEEE Access. 1:335–49. doi:10.1109/ACCESS.2013.2260813.

Mohapatra, S. K., Swain, B. R., Pati, N., Pradhan. 2014. A Road Towards Mili Meter Wave Communication For 5G Network: A Technological Overview. Trans Mach Learn Artif Intell. 2:48-60. doi:10.14738/tmlai.23.256.

Samimi, M., Wang, K., Azar, Y., Wong, G. N., Mayzus, R., Zhao, H., et al. 28 GHz Angle of Arrival and Angle of Departure Analysis for Outdoor Cellular Communications using Steerable Beam Antennas in New York City 2013.

Azar, Y., Wong, G. N., Wang, K., Mayzus, R., Schulz, J. K., Zhao, H., et al. 28 GHz Propagation Measurements For Outdoor Cellular Communications Using Steerable Beam Antennas In New York City. 2013 IEEE Int. Conf. Commun., IEEE; 2013. 5143-7. doi:10.1109/ICC.2013.6655399.

Lu, L., Li, G. Y., Swindlehurst, a. L., Ashikhmin, A., Zhang, R. 2014. An Overview of Massive MIMO: Benefits and Challenges. IEEE J Sel Top Signal Process. 8: 742-58. doi:10.1109/JSTSP.2014.2317671.

Molisch, A. F. 2009. Ultra-Wide-Band Propagation Channels. Proc IEEE. 97: 353-71. doi:10.1109/JPROC.2008.2008836.

Yang, T-S., Duel-Hallen, A., Hallen, H. 2004. Reliable Adaptive Modulation Aided by Observations of Another Fading Channel. IEEE Trans Commun. 52: 605-11. doi:10.1109/TCOMM.2004.826369.

Komine, T., Haruyama, S., Nakagawa, M. 2009. Adaptive Equalization System For Visible Light Wireless Communication Utilizing Multiple White LED Lighting Equipment. IEEE Trans Wirel Commun. 8: 2892-900. doi:10.1109/TWC.2009.060258.

Moraitis, N., Constantinou, P. 2006. Measurements and Characterization Of Wideband Indoor Radio Channel at 60 GHz. IEEE Trans Wirel Commun. 5: 880-9. doi:10.1109/TWC.2006.1618937.

Haneda K, Jarvelainen J, Karttunen A, Kyro M, Putkonen J. Indoor short-range radio propagation measurements at 60 and 70 GHz. 8th Eur. Conf. Antennas Propag. (EuCAP 2014), IEEE; 2014, p. 634–8. doi:10.1109/EuCAP.2014.6901839.

Kivinen J, Vainikainen P. Millimeter-Wave Propagation Channel Characterization for Short-Range Wireless Communications. IEEE Trans Veh Technol 2009;58:3–13. doi:10.1109/TVT.2008.924990.

Anderson HR. Estimating 28 GHz LMDS channel dispersion in urban areas using a ray-tracing propagation model. 1999 IEEE MTT-S Int. Top. Symp. Technol. Wirel. Appl. (Cat. No. 99TH8390), IEEE; 1999, p. 111–6. doi:10.1109/MTTTWA.1999.755138.

Rappaport TS, Gutierrez F, Ben-Dor E, Murdock JN, Qiao Y, Tamir JI. Broadband Millimeter-Wave Propagation Measurements and Models Using Adaptive-Beam Antennas for Outdoor Urban Cellular Communications. IEEE Trans Antennas Propag 2013;61:1850–9. doi:10.1109/TAP.2012.2235056.

ETSI 650. Spatial channel model for multiple input multiple output (MIMO) simulations. Tech Rep, 3, 2011, 3GPP TR 25996 n.d.;10.0.0.

P. Kyösti et al. IST-4-027756 WINNER II D1.1.2 v.1.1:WINNER II Channel Models. n.d.

P. Heino et al. CELTIC/CP5-026 D5.3: WINNER final channel models. Tech Rep, 2010 [Online] Available Http//projects.celticinitiative Org/winner+ n.d.

Oestges C, Czink N, Doncker P De, Degli-esposti V, Haneda K, Joseph W, et al. Pervasive Mobile and Ambient Wireless Communications. London: Springer London; 2012. doi:10.1007/978-1-4471-2315-6.

Medbo J, Borner K, Haneda K, Hovinen V, Imai T, Jarvelainen J, et al. Channel modelling for the fifth generation mobile communications. 8th Eur. Conf. Antennas Propag. (EuCAP 2014), IEEE; 2014, p. 219–23. doi:10.1109/EuCAP.2014.6901730.

Jaeckel S, Raschkowski L, Borner K, Thiele L. QuaDRiGa: A 3-D Multi-Cell Channel Model With Time Evolution for Enabling Virtual Field Trials. IEEE Trans Antennas Propag 2014;62:3242–56. doi:10.1109/TAP.2014.2310220.

Cramer RJM, Scholtz RA, Win MZ. Evaluation of an ultra-wide-band propagation channel. IEEE Trans Antennas Propag 2002;50:561–70. doi:10.1109/TAP.2002.1011221.

Rappaport TS. Wireless communication principles and practice. Englewood Cliffs, NJ, USA: Prentice-Hall, Inc.; 2002.

Downloads

Published

2016-06-23

How to Cite

UWB CHANNEL CHARACTERIZATION IN 28 GHZ MILLIMETER WAVEBAND FOR 5G CELLULAR NETWORKS. (2016). Jurnal Teknologi, 78(6-11). https://doi.org/10.11113/jt.v78.9176