NEGATIVE IMAGINARY THEOREM WITH AN APPLICATION TO ROBUST CONTROL OF A CRANE SYSTEM

Authors

  • Auwalu M. Abdullahi Department of Mechatronics Engineering Bayero University Kano, Nigeria
  • Z. Mohamed Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • M. S. Zainal Abidin Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • R. Akmeliawati Department of Mechatronic Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, Malaysia
  • A. R. Husain Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Amir A. Bature Department of Mechatronics Engineering Bayero University Kano, Nigeria
  • Ado Haruna Department of Mechatronics Engineering Bayero University Kano, Nigeria

DOI:

https://doi.org/10.11113/jt.v78.9181

Keywords:

Integral sliding mode control, negative imaginary systems, position tracking, payload sway motion control

Abstract

This paper presents an integral sliding mode (ISM) control for a case of negative imaginary (NI) systems. A gantry crane system (GCS) is considered in this work. ISM is a nonlinear control method introducing significant properties of precision, robustness, stress-free tuning and implementation. The GCS model considered in this work is derived based on the x direction and sway motion of the payload. The GCS is a negative imaginary (NI) system with a single pole at the origin. ISM consist of two blocks; the inner block made up of a pole placement controller (NI controller),  designed using linear matrix inequality for robustness and outer block made up of sliding mode control to reject disturbances. The ISM is designed to control position tracking and anti-swing payload motion. The robustness of the control scheme is tested with an input disturbance of a sine wave signal. The simulation results show the effectiveness of the control scheme.

References

Eihab, M. A, and Masoud, Z. N. 2003. Dynamics And Control Of Cranes. A Review Journal of Vibration and Control. 9: 863-908.

Omar, H. M. and Nayfeh, A. H. 2005. Gantry Cranes Gain Scheduling Feedback Control With Friction Compensation. Journal of Sound and Vibration. 281: 1-20.

Petersen, I. R. 2011. Negative Imaginary Systems Theory In The Robust Control Of Highly Resonant Flexible Structures. Proceedings of Australian Control Conference (AUCC) 2011, Melbourne, Austrlia, 10-11 Nov. 2011. 1-6.

Petersen, I. R. and Lanzon, A. 2010. Feedback Control Of Negative Imaginary Systems. IEEE Transaction on Control Systems. 30: 54-72.

Lanzon, A. and Petersen, I. R. 2007. A Modified Positive-Real Type Stability Condition. Proceedings of the European Control Conference 2007. Kos, Greece, 2-5 July 2007. 3912-3918.

Lanzon, A. and Petersen, I. R. 2008. Stability Robustness Of A Feedback Interconnection Of Systems With Negative Imaginary Frequency Response. IEEE Transactions on Automatic Control. 53: 1042-1046.

Mabrok, M. A., Kallapur, A. G., Petersen, I. and Lanzon, A. 2012. Stabilization Of Conditional Uncertain Negative-Imaginary Systems Using Riccati Equation Approach. Proceedings of the 20th International Symposium on Mathematical Theory of Networks and Systems (MTNS) 2012. Melbourne, Australia, 9-13 July, 2012. 9-13.

Mabrok, M. A., Kallapur, A. G., Petersen, I. and Lanzon, A. 2011. A new Stability Result For The Feedback Interconnection Of Negative Imaginary Systems With A Pole At The Origin. Proceedings of 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC) 2011, Orlando, Florida, 12-15 Dec. 2011. 3753-3757.

Junlin, X., Petersen, I. R. and Lanzon, A. 2010. A Negative Imaginary Lemma And The Stability Of Interconnections Of Linear Negative Imaginary Systems. IEEE Transactions on Automatic Control. 55: 2342-2347.

Junlin, X., Petersen, I. R. and Lanzon, A. 2012. Finite Frequency Negative Imaginary Systems. IEEE transactions on Automatic Ccontrol. 57: 2917-2922.

Mabrok, M. A., Kallapur, A. G., Petersen, I. and Lanzon, A. 2012. A Stability Result On The Feedback Interconnection Of Negative Imaginary Systems With Poles At The Origin. Proceedings of the 2nd Australian Control Conference (AUCC) 2012, Sydney, Australia, 15-16 Nov. 2012. 98-103.

Ferrante, A. and Ntogramatzidis, L. 2014. Some Newresults In The Theory Of Negative Imaginary Systemswith Symmetric Transfermatrix Function. Automatica. 49: 1- 9.

Karkoub, M. A. and Zribi, M. 2001. Robust Control Schemes For An Overhead Crane. Journal of Vibration and Control. 7: 395-416.

Tangwe, Y., Qin, Y. and Jianda, H. 2011. Robust Control Of Gantry Crane System With Hoisting A New Solution Based On Wave Motion. Journal of Central South University. 42: 288-292.

Almutairi, N. B. and Zribi, M. 2009. Sliding Mode Control Of A Three-Dimensional Overhead Crane. Journal of Vibration and Control. 15: 1679-1730.

Diantong, L., Jianqiang, Y., Dongbin, Z., and Wang, W. 2004. Swing-free transporting Of Two-Dimensional Overhead Crane Using Sliding Mode Fuzzy Control. Proceeding of the American Control Conference. Boston, Massachusetts June 30-July 2. 1764-1769.

Le, A. T., Jae-Jun, K., Lee, S. G., Lim, T. G. and Nho, L. C. 2014. Second-order sliding Mode Control Of A 3d Overhead Crane With Uncertain System Parameters. International Journal of Precision Engineering and Manufacturing. 15(5): 811-819

Liu, D., Yi, J., Zhao, D. and Wang, W. 2005. Adaptive Sliding Mode Fuzzy Control For A Two-Dimensional Overhead Crane. Mechatronics. 15: 505-522.

Mohd Tumari, M. Z., Saealal, M S., Ghazali, M. R. and Wahab, Y. A. 2012. H∞ Controller With Graphical LMI Region Profile For Gantry Crane System. Proceedings of the IEEE SCIS-ISIS 2012 Kobe, Japan, 20-24 Nov. 2012. 1397-1402.

Mabrok, M. A., Kallapur, A. G., Petersen, I. and Lanzon, A. 2013. Generalizing Negative Imaginary Systems Theory To Include Free Body Dynamics: Control Of Highly Resonant Structures With Free Body Motion. IEEE Transaction on Automatic Control. 59(10): 2692-2707.

Junlin, X., Petersen, I. R. and Lanzon, A. 2009. Stability Analysis Of Positive Feedback Interconnections Of Linear Negative Imaginary Systems. Proceedings of the American Control Conference (ACC 2009), St. Louis, Missouri, USA, 10-12 June, 2009. 1855-1860.

Castanos, F. and Fridma, L. 2006. Analysis And Design Of Integral Sliding Manifolds For Systems With Unmatched Perturbations. IEEE Transactions on Automatic Control. 51: 853-858.

Chilali, M. and Pascal, G. 1996. H-infinity design With Pole Placement Constraints: An LMI Approach. IEEE Transactions on Automatic Control. 41: 358-367.

andyopadhyay, B., Deepak, B., F. and Kim, K. S. 2009. Sliding Mode Control Using Novel Sliding Surfaces. Textbook Springer. 392.

Bera, M. K., Bandyopadhyay, B., and Paul, A. K. 2013. Integral Sliding Mode Control For GMAW Systems. Proceedings of the 10th International Symposium on Dynamics and Control of Process Systems (DYCOPS) 2013, Mumbai, India 18-20 December 2013. 337-342.

Kamal, S., Chalanga, A., Ramesh, K. P. and Bandyopadhyay, B. 2015. Multivariable Continuous Integral Sliding Mode Control. Proceedings of IEEE International Workshop on Recent Advances in Sliding Modes (RASM) 2015, Istanbul, Turkey, 9-11 April 2015. 1-5.

Rubagotti, M., Estrada, A., Castanos, F., Ferrara, A. and Fridman, L. 2011. Integral Sliding Mode Control For Nonlinear Systems With Matched And Unmatched Perturbations. IEEE Transactions on Automatic Control. 56: 2699-2704.

Downloads

Published

2016-06-23

How to Cite

NEGATIVE IMAGINARY THEOREM WITH AN APPLICATION TO ROBUST CONTROL OF A CRANE SYSTEM. (2016). Jurnal Teknologi (Sciences & Engineering), 78(6-11). https://doi.org/10.11113/jt.v78.9181