Optimal Controller Design For A Railway Vehicle Suspension System Using Particle Swarm Optimization
DOI:
https://doi.org/10.11113/jt.v54.92Abstract
This paper presents the design of an active suspension control of a two–axle railway vehicle using an optimized linear quadratic regulator. The control objective is to minimize the lateral displacement and yaw angle of the wheelsets when the vehicle travels on straight and curved tracks with lateral irregularities. In choosing the optimum weighting matrices for the LQR, the Particle Swarm Optimization (PSO) method has been applied and the results of the controller performance with weighting matrices chosen using this method is compared with the commonly used, trial and error method. The performance of the passive and active suspension has also been compared. The results show that the active suspension system performs better than the passive suspension system. For the active suspension, the LQR employing the PSO method in choosing the weighting matrices provides a better control performance and a more systematic approach compared to the trial and error method. Key words: active suspension control, two–axle railway vehicle, linear quadratic regulator, particle swarm optimizationDownloads
Published
2012-01-20
Issue
Section
Science and Engineering
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.
How to Cite
Optimal Controller Design For A Railway Vehicle Suspension System Using Particle Swarm Optimization. (2012). Jurnal Teknologi (Sciences & Engineering), 54(1), 71–84. https://doi.org/10.11113/jt.v54.92