THE OPPORTUNITY OF MAGNETIC INDUCTION TOMOGRAPHY MODALITY IN BREAST CANCER DETECTION

Authors

  • Gowry Balasena Tomography Imaging Research Group, School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  • Lynn Sim Biomedical Electronic Engineering, School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  • Zulkarnay Zakaria Tomography Imaging Research Group, School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  • Shahriman Abu Bakar Biomedical Electronic Engineering, School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  • Mohamad Aliff Abd Rahim Tomography Imaging Research Group, School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  • Saiful Badri Mansor Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor Malaysia
  • Ibrahim Balkhis Tomography Imaging Research Group, School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  • Mohd Hafiz Fazalul Rahiman Biomedical Electronic Engineering, School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
  • Ruzairi Abdul Rahim Process Tomography and Instrumentation Engineering Research Group (PROTOM-i), Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor Malaysia

DOI:

https://doi.org/10.11113/jt.v78.9426

Keywords:

Breast cancer, magnetic induction tomography, non-invasive

Abstract

The needs for non-invasive technique in breast cancer detection could enhance and preserve the future of medical field in Malaysia as well as countries around the world. Breast cancer has become the main concern nowadays not only for women but for man as well. In overall, the risk of women getting breast cancer is higher than man due to the denser tissue of breast in women compare to man. Beside the unawareness for the disease, the reason which contributes to this increasing number of breast cancer reported is also due to the limitations arising from modalities such as MRI, Mammography, ultrasound and other modalities. An alternative to current technologies should be improved for early detection and treatment which causes no physical harm to patients if possible. Thus, non-invasive and better technology in detecting breast cancer is very much needed in the current market. This paper will be discussing the insights of Magnetic Induction Tomography techniques in breast cancer detection.

References

B. Gowry, A. B. Shahriman, and M. Paulraj. 2015. Electrical Bio-Impedance As A Promising Prognostic Alternative In Detecting Breast Cancer : A Review. Biomedical Engineering (ICoBE), 2015 2nd International Conference on. IEEE, 2015.

H. Ellis and V. Mahadevan. 2013. Anatomy And Physiology Of The Breast. Surg. (United Kingdom). 31(1): 11-14.

H. Y. Chuang, E. Lee, Y. T. Liu, D. Lee, and T. Ideker. 2007. Network-based Classification Of Breast Cancer Metastasis. Mol. Syst. Biol. 3(140): 140.

D. N. Poller, A. Barth, D. J. Slamon, M. J. Silverstein, E. D. Gierson, W. J. Coburn, J. R. Waisman, P. Gamagami, and B. S. Lewinsky. 1995. Prognostic Classification Of Breast Ductal Carcinoma-In-Situ. Lancet. 345(8958): 1154-1157.

G. S. Dite, M. A. Jenkins, M. C. Southey, J. S. Hocking, G. G. Giles, M. R. E. McCredie, D. J. Venter, and J. L. Hopper. 2003. Familial Risks, Early-Onset Breast Cancer, And BRCA1 And BRCA2 Germline Mutations. J. Natl. Cancer Inst. 95(6): 448-57.

B. K. Edwards, H. L. Howe, L. A. G. Ries, M. J. Thun, H. M. Rosenberg, R. Yancik, P. A. Wingo, A. Jemal, and E. G. FeigaL. 2002. Annual Report To The Nation On The Status Of Cancer, 1973-1999, Featuring Implications Of Age And Aging On U.S. Cancer Burden. Cancer. 94: 2766-2792.

A. A. Oraevsky, E. V Savateeva, S. V Solomatin, A. A. Karabutov, Z. Gatalica, and T. Khamapirad. 2002. Diagnostic Imaging of Breast Cancer Microvasculature With Optoacoustic Tomography. Engineering in Medicine and Biology. 2: 2329-2330.

M. Pramanik, G. Ku, C. Li, and L. V. Wang. 2008. Design And Evaluation Of A Novel Breast Cancer Detection System Combining Both Thermoacoustic (TA) And Photoacoustic (PA) Tomography. Med. Phys. 35(6): 2218-2223.

F. W. Kremkau. 2006. Diagnostic Ultrasound: Principles And Instruments. Elsevier India. 521.

E. Steen and B. Olstad. 1994. Volume Rendering Of 3D Medical Ultrasound Data Using Direct Feature Mapping. IEEE Trans. Med. Imaging. 13(3): 517-525.

R. A. Kruger, K. K. Kopecky, A. M. Aisen, D. R. Reinecke, G. A. Kruger, and W. L. Kiser. 1999. Thermoacoustic CT With Radio Waves: A Medical Imaging Paradigm. Radiology. 211(1): 275-278.

L. E. Larsen and J. H. Jacobi. 1986. Medical Applications of Microwave Imaging. IEEE Microwave Theory and Technique Society.

E. C. Fear and M. A. Stuchly. 1999. Microwave System For Breast Tumor Detection. IEEE Microw. Guid. Wave Lett. 9(11): 470-472.

C. Li, M. Pramanik, G. Ku, and L. V Wang. 2008. Image Distortion In Thermoacoustic Tomography Caused By Microwave Diffraction. Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys. 77(3): 1-7.

L. Ke, X. Lin, and Q. Du. 2013. An Improved Back-Projection Algorithm For Magnetic Induction Tomography Image Reconstruction. Int. Conf. Biomater. Bioeng. ICBB 2012, December 19, 2012 - December 20, 2012. 647(Bmei): 630-635.

H. Scharfetter, H. K. Lackner, and J. Rosell. 2001. Magnetic Induction Tomography: Hardware For Multi-Frequency Measurements In Biological Tissues. Physiol. Meas. 22(1): 131-146.

I. Marinova and V. Mateev. 2010. Determination of Electromagnetic Properties of Human Tissues. Engineering and Technology. 746-750.

H. Griffiths. 2001. Magnetic Induction Tomography. Meas. Sci. Technol. 12(2): 1126-1131.

H. Scharfetter, R. Casañas, and J. Rosell. 2003. Biological Tissue Characterization By Magnetic Induction Spectroscopy (MIS): Requirements And Limitations. IEEE Trans. Biomed. Eng. 50(7): 870-80.

J. Rosell-Ferrer, R. Merwa, P. Brunner, and H. Scharfetter. 2006. A Multifrequency Magnetic Induction Tomography System Using Planar Gradiometers: Data Collection And Calibration. Physiol. Meas. 27(5): S271-80.

M. Hamsch, C. H. Igney, M. Vauhkonen, and A. Principle. 2007. 16 Channel Magnetic Induction Tomography System Featuring Parallel Readout. ICEBI 2007, IFMBE Proceedings. 17: 484-487.

Z. Zakaria, L. P. Yern, A. Azamimi, R. A. Rahim, and M. S. Badri. 2012. Simulation Study on Size and Location Identification of Tumors in Liver Tissue through Eddy Current Distribution Analysis. 2012 International Conference on Biomedical Engineering (ICoBE) Proceedings. 27-28.

S. Watson. 2011. A Highly Phase-Stable Differential Detector Amplifier For Magnetic Induction Tomography. Physiol. Meas. 32(7): 917-926.

H. Griffiths. 2005. Magnetic Induction Tomography.Electrical Impedance Tomography: Methods, History and Applications. 1st Ed. D. S. Holder, Ed. Bristol, UK: Institute of Physics Publishing, 2005. 213-238.

R. Merwa and H. Scharfetter. 2007. Magnetic Induction Tomography: Evaluation Of The Point Spread Function And Analysis Of Resolution And Image Distortion. Physiol. Meas. 28(7): S313-24.

C. N. Huang, F. M. Yu, and H. Y. Chung. 2007. Rotational Electrical Impedance Tomography. Meas. Sci. Technol. 18(9): 2958-2966.

Z. Zakaria, I. Balkhis, S. Yaacob, M. S. B. Mansor, R. A. Rahim, and H. A. Rahim. 2013. Evaluation on the Sensitivity of Tri-Coil Sensor Jig for 3D Image Reconstruction in Magnetic Induction Tomography. 2013 UKSim 15th Int. Conf. Comput. Model. Simul. 768-773.

A. Caduff, M. S. Talary, M. Mueller, F. Dewarrat, J. Klisic, M. Donath, L. Heinemann, and W. A. Stahel. 2009. Non-Invasive Glucose Monitoring In Patients With Type 1 Diabetes: A Multisensor System Combining Sensors For Dielectric And Optical Characterisation Of Skin. Biosens. Bioelectron. 24(9): 2778-2784.

B. Dekdouk, W. Yin, C. Ktistis, D. W. Armitage, and A. J. Peyton. 2010. A Method To Solve The Forward Problem In Magnetic Induction Tomography Based On The Weakly Coupled Field Approximation. IEEE Trans. Biomed. Eng. 57(4): 914-21.

G. Y. Tian, A. Al-Qubaa, and J. Wilson. 2012. Design Of An Electromagnetic Imaging System For Weapon Detection Based On GMR Sensor Arrays. Sensors Actuators A Phys. 174: 75-84.

D. Gursoy and H. Scharfetter. 2009. Feasibility of Lung Imaging Using Magnetic Induction Tomography. IFMBE Proceedings 25/II, 2009. 4: 525-528.

H. Scharfetter, R. Merwa, and K. Pilz. 2005. A New Type Of Gradiometer For The Receiving Circuit Of Magnetic Induction Tomography (MIT). Physiol. Meas. 26(2): 307-318.

Y. Maimaitijiang, M. A. Roula, and J. Kahlert. 2010. Approaches For Improving Image Quality In Magnetic Induction Tomography. Physiol. Meas. 31(8): S147-56.

C. H. Igney, S. Watson, R. J. Williams, H. Griffiths, and O. Dössel. 2005. Design And Performance Of A Planar-Array MIT System With Normal Sensor Alignment. Physiol. Meas. 26(2): S263-78.

A. Korjenevsky, V. Cherepenin, and S. Sapetsky. 2000. Magnetic Induction Tomography: Experimental Realization. Physiol. Meas. 21(1): 89–94.

K. Stawicki, S. Gratkowski, M. Komorowski, and T. Pietrusewicz. 2009. A New Transducer for Magnetic Induction Tomography. IEEE Trans. Magn. 45(3): 1832-1835.

Z. Zakaria, M. Saiful, B. Mansor, R. Abdul, I. Balkhis, M. Hafiz, and F. Rahiman. 2013. Magnetic Induction Tomography: Receiver Circuit and Its Design Criteria. J. Teknol. 64(5): 83-87.

Downloads

Published

2016-07-24

Issue

Section

Science and Engineering

How to Cite

THE OPPORTUNITY OF MAGNETIC INDUCTION TOMOGRAPHY MODALITY IN BREAST CANCER DETECTION. (2016). Jurnal Teknologi, 78(7-4). https://doi.org/10.11113/jt.v78.9426