AUTOMATED BRAIN LESION CLASSIFICATION USING HYBRID FUZZY C-MEANS WITH CORRELATION TEMPLATE AND WAVELET TRANSFORM
DOI:
https://doi.org/10.11113/jt.v78.9449Keywords:
Segmentation, brain lesion, Fuzzy C-Means (FCM), correlation template, waveletAbstract
This paper presents a new technique for automatically detecting and characterizing major brain lesions for diffusion-weighted imaging. The analytical framework consists of pre-processing, segmentation, features extraction and classification. For segmentation process, Fuzzy C-Means integrated with correlation template are proposed to detect the lesion region. The algorithm performance is evaluated using Jaccard and both false positive and false negative rates. Next, the features from wavelet transform are extracted from the region and fed into the rule-based classifier. Results demonstrated that FCM with correlation template offered the best performance for acute stroke segmentation with the highest rate of 0.77 Jaccard index. The classification accuracy for acute stroke, tumor, chronic stroke and necrosis are 94%, 97, 63% and 60%. In conclusion, the proposed hybrid analysis has the potential to be explored as a computer-aided tool to detect and diagnose of human brain lesion.
References
Balafar, M. A., A. R. Ramli, M. I. Saripan, and S. Mashohor. 2008. Medical Image Segmentation using Fuzzy C-Mean (FCM), Bayesian Method and User Interaction. IEEE International Conference on Wavelet Analysis and Pattern Recognition. ICWAPR'08. 1: 68-73.
Chang, P. L., and W. G. Teng. 2007. Exploiting the Self-Organizing Map for Medical Image Segmentation. Twentieth IEEE International Symposium on Computer-Based Medical Systems. CBMS'07. 281-288.
Balafar, M. A., A. R. Ramli, M. I. Saripan, R. Mahmud, S. Mashohor, and M. Balafar. 2008. New Multi-Scale Medical Image Segmentation Based on Fuzzy C-Mean (FCM). IEEE Conference on Innovative Technologies in Intelligent Systems and Industrial Applications. 66-70.
Hall, L. O., A. M. Bensaid, L. P. Clarke, R. P. Velthuizen, M. S. Silbiger, & J. C. Bezdek. 1992. A Comparison of Neural Network and Fuzzy Clustering Techniques in Segmenting Magnetic Resonance Images of the Brain. Neural Networks, IEEE Transactions on, 3(5): 672-682.
Kannan, S. R., R. Pandiyarajan, And S. Ramathilagam. 2010. Effective Weighted Bias Fuzzy C-Means in Segmentation of Brain MRI. International Conference on Intelligent and Advanced Systems (ICIAS), 2010. 1-6.
Bandhyopadhyay, D. S. K., and T. U. Paul. 2012. Segmentation of Brain MRI Image–A Review. International Journal of Advanced Research in Computer Science and Software Engineering. 2(3).
Norhashimah, M. S., A. R. Abdullah. 2012. Fully Automated Region Growing Segmentation of Brain Lesion in Diffusion-Weighted MRI. IAENG International Journal of Computer Science. 39(2): 155-164.
Norhashimah, M. S., A. R. Syed, A. F. Muda, M. Sobri. 2014. Automatic Brain Lesion Detection and Classification Based on Diffusion-Weighted Imaging using Adaptive Thresholding and a Rule-Based Classifier. International Journal of Engineering and Technology. 6(6): 2685-2697.
Christ, M. J., and R. M. S. Parvathi. 2011. Segmentation of Medical Image using Clustering and Watershed Algorithms. American Journal of Applied Sciences. 8(12): 1349.
Ayuni, F. M., M. S. Norhashimah, S. A. R. Abu Bakar. 2015. Brain Lesion Segmentation using Fuzzy C-Means on Diffusion-Weighted Imaging. ARPN Journal of Engineering and Applied Sciences.10(3): 1138-1144.
Badmera, M. S., A. P. Nilawar, and A. R. Karwankar. 2013. Modified FCM Approach for MR Brain Image Segmentation. IEEE Conference on Circuits, Power and Computing Technologies (ICCPCT). 891-896.
Majd, E. M., M. A. As' Ari, U. U. Sheikh, and S. A. R. Abu-Bakar.. 2012. Hybrid Image Segmentation using Fuzzy C-Means and Gravitational Search Algorithm. Fourth International Conference on Digital Image Processing (ICDIP 2012) . International Society for Optics and Photonics. 83342V-83342V.
Ahirwar, A.. 2013. Study of Techniques used for Medical Image Segmentation and Computation of Statistical Test for Region Classification of Brain MRI. International Journal of Information Technology and Computer Science (IJITCS). 5(5): 44.
Dokur, Z. 2008. A Unified Framework for Image Compression and Segmentation by using an Incremental Neural Network. Expert Systems with Applications. 34(1): 611-619.
Anandgaonkar, G. P., and G. S. Sable. 2013. Detection and Identification of Brain Tumor in Brain MRI using Fuzzy C-Means Segmentation. International Journal of Research in Computer and Communication Engineering. 2(10).
Shasidhar, M., V. S. Raja, and B. V. Kumar. 2011. MRI Brain Image Segmentation using Modified Fuzzy C-Means Clustering Algorithm. IEEE International Conference on Communication Systems and Network Technologies (CSNT). 473-478.
Kwon, M.,Y. Han, H. Park, and I. H. Shin. 2003. Segmentation of Brain MR Image using Template Matching and Hierarchical Fuzzy C-Means Algorithm. International Society for Magnetic Resonance in Medicine (ISMRM) 13.
Bezdek, J. 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum Press.
Li, C., R. Huang, Z. Ding, C. Gatenby, D. Metaxas, & J. Gore. 2008. A Variational Level Set Approach to Segmentation and Bias Correction of Images with Intensity Inhomogeneity. In Medical Image Computing and Computer-Assisted Intervention–MICCAI. Springer Berlin Heidelberg. 1083-1091.
Li, C., C. Xu, C. Gui, and M. D. Fox. 2010. Distance Regularized Level Set Evolution and Its Application to Image Segmentation. IEEE Transactions on Image Processing, 19(12): 3243-3254.
Zaıane, O. R., M. L. Antonie, and A. Coman. 2002. Mammography Classification by an Association Rule-Based Classifier. Proceeding MDM/KDD: Int. Workshop Multimedia Data Mining. 62-69.
Duda, R., P. Hart and D. Stork. 2001. Pattern Classification. New York: Wiley.
Muda, A. F., N. M. Saad, N. Waeleh, A. R. Abdullah and L. Y. Fen. 2015. Integration of Fuzzy C-Means with Correlation Template and Active Contour for Brain Lesion Segmentation in Diffusion-Weighted MRI. IEEE 3rd International Conference on Artificial Intelligence, Modelling and Simulation, AIMS2015.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.