A SIMULATION STUDY OF SINGLE CELL INSIDE AN INTEGRATED DUAL NANONEEDLE-MICROFLUDIC SYSTEM

Authors

  • Muhammd Asraf Mansor Micro-Nano System Engineering Research Group, Department of Control and Mechatronic Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia
  • Mohd Ridzuan Ahmad Micro-Nano System Engineering Research Group, Department of Control and Mechatronic Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.9451

Keywords:

Dual nanoneedle, single cell analysis, finite element analysis, microfluidic

Abstract

Electrical properties of living cells have been proven to play significant roles in understanding of various biological activities including disease progression both at the cellular and molecular levels. Analyzing the cell’s electrical states especially in single cell analysis (SCA) lead to differentiate between normal cell and cancer cell. This paper presents a simulation study of micro-channel and nanoneedle structure, fluid manipulation and current flow through HeLa cell inside a microfluidic channel. To perform electrical measurement, gold dual nanoneedle has been utilized. The simulation result revealed, the cell penetration occurs at microchannel dimension and solution flow rate is 22 µm x 70 µm x 25 µm (width x length x height) and 0.396 pL/min, respectively. The purposed device has capability to characterize the electrical property of single cells can be used as a novel method for cell viability detection in instantaneous manner.

References

J. El-Ali, P. K. Sorger, and K. F. Jensen. 2006. Cells on Chips. Nature. 442(710): 403-41.

S. Suresh, J. Spatz, J. P. Mills, a Micoulet, M. Dao, C. T. Lim, M. Beil, and T. Seufferlein. 2005. Connections between Single-Cell Biomechanics and Human Disease States: Gastrointestinal Cancer and Malaria. Acta Biomaterialia. 1(1): 15-30.

H. M. Coley, F. H. Labeed, H. Thomas, and M. P. Hughes. 2007. Biophysical Characterization of MDR Breast Cancer Cell Lines Reveals the Cytoplasm is Critical in Determining Drug Sensitivity. Biochimica et Biophysica Acta. 1770(4): 601-608.

Y. Cho, A. B. Frazier, Z. G. Chen, and A. Han. 2009. Whole-Cell Impedance Analysis for Highly and Poorly Metastatic Cancer Cells. Journal of Microelectromechanical Systems. 18(4): 808-817.

Y. Zhao, D. Chen, Y. Luo, H. Li, B. Deng, S.-B. Huang, T.-K. Chiu, M.-H. Wu, R. Long, H. Hu, X. Zhao, W. Yue, J. Wang, and J. Chen. 2013. A Microfluidic System for Cell Type Classification Based on Cellular Size-Independent Electrical Properties. Lab on a Chip. 13(12): 2272-2277.

S. M. Radke and E. C. Alocilja. 2005. A High Density Microelectrode Array Biosensor for Detection of E. coli O157:H7. Biosensors and Bioelectronics. 20(8): 1662-1667.

E. Du, S. Ha, M. Diez-Silva, M. Dao, S. Suresh, and A. P. Chandrakasan. 2013. Electric Impedance Microflow Cytometry for Characterization of Cell Disease States. Lab on a Chip. 13(19): 3903-3909.

F. Asphahani and M. Zhang. 2007. Cellular Impedance Biosensors for Drug Screening and Toxin Detection. Analyst. 132(9): 835-841.

C. Gabriel, S. Gabriel, and E. Corthout. 1996. The Dielectric Properties of Biological Tissues : I. Literature Survey. 41: 2231-2249.

M. R. Stoneman, M. Kosempa, W. D. Gregory, C. W. Gregory, J. J. Marx, W. Mikkelson, J. Tjoe, and V. Raicu. 2007. Correction of Electrode Polarization Contributions to the Dielectric Properties of Normal and Cancerous Breast Tissues at Audio/Radio Frequencies. Physics in Medicine and Biology. 52(22): 6589-6604.

D. Das, F. A. Kamil, K. Biswas, and S. Das. 2014. Evaluation of Single Cell Electrical Parameters from Bioimpedance of a Cell Suspension. RSC Advances. 4(35): 18178.

T. A. Nguyen, T. Yin, D. Reyes, and G. A. Urban. 2013. Microfluidic Chip with Integrated Electrical Cell-Impedance Sensing for Monitoring Single Cancer Cell Migration in Three-Dimensional Matrixes. Analytical Chemistry. 85(22): 11068-11076.

B. F. Brehm-Stecher and E. A. Johnson. 2004. Single-Cell Microbiology: Tools, Technologies, and Applications. Microbiology and Molecular Biology Reviews. 68(3): 538-559.

K. Kunzelmann. 2005. Ion Channels and Cancer. Journal of Membrane Biology. 205(3): 159-173.

S.-B. Huang, Y. Zhao, D. Chen, H.-C. Lee, Y. Luo, T.-K. Chiu, J. Wang, J. Chen, and M.-H. Wu. 2014. A Clogging-Free Microfluidic Platform with an Incorporated Pneumatically Driven Membrane-Based Active Valve Enabling Specific Membrane Capacitance and Cytoplasm Conductivity Characterization of Single Cells. Sensors and Actuators B: Chemical. 190: 928-936.

M. Abdolahad, Z. Sanaee, M. Janmaleki, S. Mohajerzadeh, M. Abdollahi, and M. Mehran. 2012. Vertically Aligned Multiwall-Carbon Nanotubes to Preferentially Entrap Highly Metastatic Cancerous Cells. Carbon. 50(5): 2010-2017.

B. Sakmann and E. Neher. 1984. Patch Clamp Techniques for Studying Ionic Channels in Excitable Membranes. Annual Review of Physiology. 46: 455-472.

M. R. Ahmad and M. Nakajima. 2009. Single Cells Electrical Characterizations using Nanoprobe via ESEM-Nanomanipulator System. IEEE Conference on Nanotechnology. 8: 589-592.

J. Yang, Y. Huang, X. Wang, X. B. Wang, F. F. Becker, and P. R. Gascoyne. 1999. Dielectric Properties of Human Leukocyte Subpopulations Determined by Electrorotation as a Cell Separation Criterion. Biophysical Journal. 76(6): 3307-3314.

W. M. Arnold and U. Zimmermann. 1982. Rotating-Field-Induced Rotation and Measurement of the Membrane Capacitance of Single Mesophyll Cells of Avena Sativa Sites. Zeitschrift für Naturforsch. 37: 908-915.

A. Han and a B. Frazier. 2006. Ion Channel Characterization using Single Cell Impedance Spectroscopy. Lab on a Chip. 6(11): 1412-1414.

C. M. Kurz, H. Büth, A. Sossalla, V. Vermeersch, V. Toncheva, P. Dubruel, E. Schacht, and H. Thielecke. 2011. Chip-Based Impedance Measurement on Single Cells for Monitoring Sub-Toxic Effects on Cell Membranes. Biosensors and Bioelectronics. 26(8): 3405-3412.

S. Gawad, L. Schild, and P. H. Renaud. 2001. Micromachined Impedance Spectroscopy Flow Cytometer for Cell Analysis and Particle Sizing. Lab on a Chip. 1(1): 76-82.

N. Haandbæk, S. C. Bürgel, F. Heer, and A. Hierlemann. 2014. Characterization of Subcellular Morphology of Single Yeast Cells using High Frequency Microfluidic Impedance Cytometer. Lab on a Chip. 14: 369-377.

Y. Zheng, J. Nguyen, Y. Wei, and Y. Sun. 2013. Recent Advances in Microfluidic Techniques for Single-Cell Biophysical Characterization. Lab on a Chip. 13(13): 2464-2483.

M. A. Mansor and M. R. Ahmad. 2015. Single Cell Electrical Characterization Techniques. International Journal of Molecular Sciences. 16(6): 12686-12712.

S. Ingebrandt, G. Wrobel, S. Eick, S. Schafer, and A. Offenhausser. 2007. Probing the Adhesion and Viability of Individual Cells with Field-Effect Transistors. International Solid-State Sensors, Actuators and Microsystems Conference: 803-806.

R. K. Sahu, U. Zelig, M. Huleihel, N. Brosh, M. Talyshinsky, M. Ben-Harosh, S. Mordechai, and J. Kapelushnik. 2006. Continuous Monitoring of WBC (Biochemistry) in an Adult Leukemia Patient using Advanced FTIR-Spectroscopy. Leukemia Research. 30(6): 687-693.

M. R. Ahmad, M. Nakajima, M. Kojima, S. Kojima, M. Homma, and T. Fukuda. 2012. Instantaneous and Quantitative Single Cells Viability Determination using Dual Nanoprobe Inside ESEM. IEEE Transactions on Nanotechnology. 11(2): 298-306.

M. R. Ahmad, M. Nakajima, S. Kojima, M. Homma, and T. Fukuda. 2008. In Situ Single Cell Mechanics Characterization of Yeast Cells using Nanoneedles Inside Environmental SEM. IEEE Transactions on Nanotechnology. 7(5): 607-616.

M.-H. Wang and L.-S. Jang. 2009. A Systematic Investigation Into the Electrical Properties of Single Hela Cells via Impedance Measurements and COMSOL Simulations. Biosensors and Bioelectronics. 24(9): 2830-2835.

Yajing Shen, M. Nakajima, M. R. Ahmad, T. Fukuda, S. Kojima, and M. Homma. 2009. Single Cell Penetration using Nano-Pipette by E-SEM Nanorobotic Manipulation System. International Conference on Mechatronics and Automation. 8: 1849-1854.

W. Fichtner. 2008. Overview of Technology Computer-Aided Design Tools and Applications in Technology Development, Manufacturing and Design. Journal of Computational and Theoretical Nanoscience. 5(6): 1089-1105.

J. M. Gere. 2001. Mechanics of Materials. 5th Edition. Brooks/Cole, New York.

Y. N. Luo, D. Y. Chen, Y. Zhao, C. Wei, X. T. Zhao, W. T. Yue, R. Long, J. B. Wang, and J. Chen. 2014. A Constriction Channel Based Microfluidic System Enabling Continuous Characterization of Cellular Instantaneous Young’s Modulus. Sensors and Actuators, B: Chemical. 202: 1183-1189.

J. R. Greer, W. C. Oliver, and W. D. Nix. 2005. Size Dependence of Mechanical Properties of Gold at the Micron Scale in the Absence of Strain Gradients. Acta Materialia. 53(6): 1821-1830.

I. Obataya, C. Nakamura, S. Han, N. Nakamura, and J. Miyake. 2005. Nanoscale Operation of a Living Cell using an Atomic Force Microscope with a Nanoneedle. Nano Letters. 5(1): 27-30.

S. Li and L. Lin. 2007. A Single Cell Electrophysiological Analysis Device with Embedded Electrode. Sensors and Actuators A: Physical. 134(1): 20-26.

Downloads

Published

2016-07-26

Issue

Section

Science and Engineering

How to Cite

A SIMULATION STUDY OF SINGLE CELL INSIDE AN INTEGRATED DUAL NANONEEDLE-MICROFLUDIC SYSTEM. (2016). Jurnal Teknologi, 78(7-5). https://doi.org/10.11113/jt.v78.9451