INVESTIGATION OF GRAPHENE CHANNEL INTERACTION WITH YEAST CELL FOR CELL COUNTING APPLICATION
DOI:
https://doi.org/10.11113/jt.v78.9454Keywords:
Graphene, cell counting, yeast cellAbstract
Graphene superior and unique properties make it a suitable material for biosensor. In this work, graphene interaction with yeast cell is investigated for development of graphene-based cell counter. The fabricated graphene channel was characterized by means of two-terminal and solution-gated three-terminal measurement setup. The correlation between graphene channel resistance and cell concentration was confirmed. The yeast cell was found to give n-type doping which modulate the conductivity of graphene channel.
References
Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. 2004. Electric Field Effect in Atomically Thin Carbon Films. Science. 306: 666-669.
Meng-Chu, C., H. Cheng-Liang, and H. Ting-Jen. 2014. Fabrication of Humidity Sensor Based on Bilayer Graphene. IEEE Electron Device Letters. 35: 590-592.
Lei, N., P. Li, W. Xue, and J. Xu. 2011. Simple Graphene Chemiresistors as pH Sensors: Fabrication and Characterization. Measurement Science and Technology. 22: 107002.
Mailly-Giacchetti, B., A. Hsu, H. Wang, V. Vinciguerra, F. Pappalardo, L. Occhipinti, E. Guidetti, S. Coffa, J. Kong, and T. Palacios. 2013. pH Sensing Properties of Graphene Solution-Gated Field-Effect Transistors. Journal of Applied Physics. 114: 084505.
Tehrani, Z., G. Burwell, M. A. M. Azmi, A. Castaing, R. Rickman, J. Almarashi, P. Dunstan, A. M. Beigi, S. H. Doak, and O. J. Guy. 2014. Generic Epitaxial Graphene Biosensors for Ultrasensitive Detection of Cancer Risk Biomarker. 2D Materials. 1: 025004.
Ang, P. K., A. Li, M. Jaiswal, Y. Wang, H. W. Hou, J. T. L. Thong, C. T. Lim, and K. P. Loh. 2011. Flow Sensing of Single Cell by Graphene Transistor in a Microfluidic Channel. Nano Letters. 11: 5240-5246.
Paulus, G. L. C., J. T. Nelson, K. Y. Lee, Q. H. Wang, N. F. Reuel, B. R. Grassbaugh, S. Kruss, M. P. Landry, J. W. Kang, E. Vander Ende, J. Zhang, B. Mu, R. R. Dasari, C. F. Opel, K. D. Wittrup, and M. S. Strano. 2014. A Graphene-Based Physiometer Array for the Analysis of Single Biological Cells. Scientific Reports. 4: 6865.
Absher, M. 1973. Tissue Culture: Methods and Applications. Academic Press.
Graham, M. D. 2003. The Coulter Principle: Foundation of an Industry. Journal of the Association for Laboratory Automation. 8: 72-81.
Boyd, A. R., T. S. Gunasekera, P. V. Attfield, K. Simic, S. F. Vincent, and D. A. Veal. 2003. A Flow-Cytometric Method for Determination of Yeast Viability and Cell Number in a Brewery. FEMS Yeast Research. 3: 11–16.
Hong, D., G. Lee, N. C. Jung, and M. Jeon. 2013. Fast Automated Yeast Cell Counting Algorithm using Bright-Field and Fluorescence Microscopic Images. Biological Procedures Online. 15: 13.
Farmer, D. B., R. Golizadeh-Mojarad, V. Perebeinos, Y.-M. Lin, G. S. Tulevski, J. C. Tsang, and P. Avouris. 2009. Chemical Doping and Electron−Hole Conduction Asymmetry in Graphene Devices. Nano Letters. 9: 388-392.
Ni, Z. H., H. M. Wang, Z. Q. Luo, Y. Y. Wang, T. Yu, Y. H. Wu, and Z. X. Shen. 2010. The Effect of Vacuum Annealing on Graphene. Journal of Raman Spectroscopy. 41: 479-483.
Liu, H., Y. Liu, and D. Zhu. 2011. Chemical Doping of Graphene. Journal of Materials Chemistry. 21: 3335-3345.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.