SENSITIVITY ANALYSIS OF BIOHYDROGEN PRODUCTION FROM IMPERATA CYLINDRICA USING STOICHIOMETRIC EQUILIBRIUM MODEL

Authors

  • Olagoke Oladokun Center of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Arshad Ahmad Center of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Tuan Amran Tuan Abdullah Center of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Bemgba Bevan Nyakuma Center of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Fadhzir A. Kamaroddin Center of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Murtala Ahmed Department of Chemical Engineering, University of Maiduguri, P.M.B 1069, Maiduguri, Borno State, Nigeria
  • Habib Alkali Center of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.9577

Keywords:

Biomass, thermodynamics, modelling, gasification

Abstract

This paper investigated the production of biohydrogen from Imperata cylindrica, using stoichiometric equilibrium model. The stoichiometric equilibrium model uses biomass ultimate analysis, thermodynamic equilibrium and elemental balance on biomass gasification reaction. The sensitivity analysis was studied over a wide range of operating conditions involving temperature (250 – 1500 °C), pressure (1 – 5 atm) and Steam to fuel ratio (0-5). The result shows biohydrogen and other biogas product were sensitive to temperature and steam-feed ratio, whereas effect of pressure is negligible. The operating condition for optimal biohydrogen production  in moles (23%) was atmospheric pressure, temperature, 1500 °C and steam-feed ratio, 5. Biogas product mixtures are H2, 23%, CO, 17%, CO2, 12% CH4, 0% and H2O, 60%. Increase in steam-feed ratio (0, 1, 2, 3, 4 and 5) significantly increase the biohydrogen by 1381%, 90%, 46%, 31% and 24%. The stoichiometry equilibrium model could effectively be used in determining biohydrogen production and its sensitivity to temperature and steam

References

Doherty, W., Reynolds, A., Kennedy, D. 2009. The Effect of Air Preheating in a Biomass CFB Gasifier Using ASPEN Plus Simulation. Biomass and Bioenergy. 33(9): 1158-1167.

Ng, R.T.L., Tay, D.H.S., Wan Ab Karim Ghani, W.A., Ng, D.K.S. 2013. Modelling and Optimisation of Biomass Fluidised Bed Gasifier. Applied Thermal Engineering. 61(1): 98-105.

Mohanty, P., Pant, K.K., Mittal, R. 2015. Hydrogen Generation from Biomass Materials: Challenges and Opportunities. Wiley Interdisciplinary Reviews: Energy and Environment. 4(2): 139-155.

Sims, R.E., Mabee, W., Saddler, J.N., Taylor, M. 2010. An Overview of Second Generation Biofuel Technologies. Bioresource Technology. 101(6): 1570-1580.

Nyakuma, B.B., Johari, A., Ahmad, A., Abdullah, T.A.T. 2014. Comparative Analysis of the Calorific Fuel Properties of Empty Fruit Bunch Fiber and Briquette. Energy Procedia. 52: 466-473.

Jeguirim, M., Dorge, S., Trouve, G. 2010. Thermogravimetric Analysis and Emission Characteristics of Two Energy Crops in Air Atmosphere: Arundo donax and Miscanthus giganthus. Bioresource Technology. 101(2): 788-793.

Hodgson, E.M., Nowakowski, D.J., Shield, I., et al. 2011. Variation in Miscanthus Chemical Composition and Implications for Conversion by Pyrolysis and Thermo-Chemical Bio-Refining for Fuels and Chemicals. Bioresource Technology. 102(3): 3411-3418.

Keshwani, D.R., Cheng, J.J. 2009. Switchgrass for bioethanol and other value-added applications: a review. Bioresour Technol. 100(4): 1515-1523.

Balan, V., Kumar, S., Bals, B., Chundawat, S., Jin, M., Dale, B. 2012. Biochemical and Thermochemical Conversion of Switchgrass to Biofuels. In Monti A. (ed.) Switchgrass, Green Energy and Technology. London, UK: Springer. 153-185.

Holzmueller, E.J., Jose, S. 2012. Response of the Invasive Grass Imperata cylindrica to Disturbance in the Southeastern Forests, USA. Forests. 3(4): 853-863.

Oladokun, O., Ahmad, A., Kamaroddin, M.F.A., Abdullah, T.A.T., Nyakuma, B.B. 2015. A Quasi Steady State Model for Flash Pyrolysis of Biomass in a Transported Bed Reactor. Jurnal Teknologi. 75(6): 35-41.

Nyakuma, B.B., Oladokun, O.A., Johari, A., Ahmad, A., Abdullah, T.A.T. 2014. A Simplified Model for Gasification of Oil Palm Empty Fruit Bunch Briquettes. Jurnal Teknologi. 69(2): 7-9.

Basu, P. 2010. Biomass gasification and pyrolysis: practical design and theory. Burington, USA: Academic Press.

Gautam, G., Adhikari, S., Bhavnani, S. 2010. Estimation of Biomass Synthesis Gas Composition using Equilibrium Modeling. Energy & Fuels. 24(4): 2692-2698.

Jarungthammachote, S., Dutta, A. 2007. Thermodynamic Equilibrium Model and Second Law Analysis of a Downdraft Waste Gasifier. Energy. 32(9): 1660-1669.

Oladokun, O., Ahmad, A., Abdullah, T.A.T., Bemgba B. Nyakuma, Al-Shatri, A.H., Bello, A.A. 2015. Modelling Multicomponent Devolatilization Kinetics of Imperata Cylindrica. Chemical Engineering Transactions. 45: 919-924.

Rupesh, S., Muraleedharan, C., Arun, P. 2015. A Comparative Study on Gaseous Fuel Generation Capability of Biomass Materials by Thermo-Chemical Gasification Using Stoichiometric Quasi-Steady-State Model. International Journal of Energy and Environmental Engineering. 6(4): 375-384.

Vassilev, S.V., Vassileva, C.G., Vassilev, V.S. 2015. Advantages and Disadvantages of Composition and Properties of Biomass in Comparison with Coal: An Overview. Fuel. 158: 330-350.

Vagia, E., Lemonidou, A. 2007. Thermodynamic Analysis of Hydrogen Production via Steam Reforming of Selected Components of Aqueous Bio-oil Fraction. International Journal of Hydrogen Energy. 32(2): 212-223.

Nyakuma, B.B., Mazangi, M., Tuan Abdullah, T.A., Johari, A., Ahmad, A., Oladokun, O. 2014. Gasification of Empty Fruit Bunch Briquettes in a Fixed Bed Tubular Reactor for Hydrogen Production. Applied Mechanics and Materials. 699: 534-539.

Montero, C., Oar-Arteta, L., Remiro, A., Arandia, A., Bilbao, J., Gayubo, A.G. 2015. Thermodynamic Comparison between Bio-Oil and Ethanol Steam Reforming. International Journal of Hydrogen Energy. 40(46): 15963-15971.

Halvorsen, B.M., Adhikari, U., Eikeland, M.S. 2015. Gasification of Biomass for Production of Syngas for Biofuel. Proceedings of the 56th SIMS. Linköping, Sweden. October 07-09, 2015. 255-260.

Dascomb, J., Krothapalli, A., Fakhrai, R. 2013. Thermal Conversion Efficiency of Producing Hydrogen Enriched Syngas from Biomass Steam Gasification. International Journal of Hydrogen Energy. 38(27): 11790-11798.

Oladokun, O., Ahmad, A., Abdullah, T.A.T., Nyakuma, B.B., Kamaroddin, M.F.A., Nor, S.H.M. 2016. Biohydrogen Production from Imperata Cylindrica Bio-Oil Using Non-Stoichiometric and Thermodynamic Model. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2016.05.200.

Downloads

Published

2016-08-10

How to Cite

SENSITIVITY ANALYSIS OF BIOHYDROGEN PRODUCTION FROM IMPERATA CYLINDRICA USING STOICHIOMETRIC EQUILIBRIUM MODEL. (2016). Jurnal Teknologi, 78(8-3). https://doi.org/10.11113/jt.v78.9577