CONSIDERATION OF CARBON NANOTUBE-BASED NANOFLUID IN THERMAL TRANSFER.

Authors

  • Thierry Mare LGCGM EA3913, Equipe Matériaux et Thermo-Rhéologie, Université Rennes 1, IUT de Rennes, 3 rue du Clos Courtel, BP 90422, 35704 Rennes Cedex 7, France
  • Patrice Estelle Fu LGCGM EA3913, Equipe Matériaux et Thermo-Rhéologie, Université Rennes 1, IUT de Saint-Malo, Rue de la Croix Désilles, CS51713, 35417 Saint-Malo Cedex, France
  • Salma Halelfadl Fu LGCGM EA3913, Equipe Matériaux et Thermo-Rhéologie, Université Rennes 1, IUT de Saint-Malo, Rue de la Croix Désilles, CS51713, 35417 Saint-Malo Cedex, France
  • Normah Mohd Ghazali Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.9583

Keywords:

Nanofluid, viscosity, conductivity

Abstract

In the current trend towards demand for effective heat removal of high density heat flux, research into nanofluids have escalated due to the rise in thermal conductivity associated with the coolants. Are nanofluids a solution for a better thermal management? Does the application of nanofluids as coolants have limitations? This article presents a review of the thermophysical properties of carbon nanotube-water nanofluids, in particular the desired properties of low viscosity and high thermal conductivity. The effects of the concentration, temperature, aspect ratio, and surfactant on the thermal conductivity and viscosity of carbon nanotube nanofluid have been studied experimentally. These effects are thendiscussed for evaluation of the applicability of carbon nanotube-based nanofluidas a coolant for heat removal purposes.

References

Chen, L., Xie, H., Li, Y. and Yu, W. 2008. Nanofluids Containing Carbon Nanotubes Treated by Mechanochemical Reaction. Thermochim Acta. 477: 4-21.

Maxwell, J. C. 1881.A Treatise on Electricity and Magnetism. Second Edition. Oxford: Clarendon Press.

Hamilton, R. L. and Crosser, O.K. 1962. Thermal Conductivity of Heterogeneous Two Component Systems, Industrial & Engineering Chemistry Fundamentals. 1/3 :187-191.

Koo, J. and Kleinstreuer, C. 2004. A New Thermal Conductivity Model for Nanofluids, Journal of Nanoparticle Research. 6: 577-588.

Yang, Y., Grulke, E. A., Zhang, Z. G. and Wu, G. 2006. Thermal and Rheological Properties of Carbon Nanotube-in-oil Dispersions. J. Appl Phys. 99: 114307.

Yu, W. and Choi, S. U. S. 2003. The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: a Renovated Maxwell Model. J. Nanoparticle Res. 5: 167-171.

Walvekar, R., Faris, I.A. and Khalid, M. 2012. Thermal Conductivity of Carbon Nanotube Nanofluid-Experimental and Theoretical Study.Heat Transfer-Asian Research. 41(2): 145-163.

Wang, X.Q. and Mujumdar, A.S. 2007. Heat transfer Characteristics of Nanofluids: A Review. International Journal of Thermal Sciences. 46: 1-19.

Ruan, B., and Jacobi, A. M. 2012. Heat Transfer haracteristics of Multi-walled Carbon Nanotubes Suspensions (MWCNT nanofluids) in Intertube Falling Film Flow. International Journal of Heat and Mass Transfer. 55: 3186-3195.

Halelfadl, S., Estellé, P., Aladag, B., Doner, N. andMaré T. 2013. Viscosity of Carbon Nanotubes Water-based Nanofluids: Influence of Concentration and Temperature. International Journal of Thermal Sciences. 71: 111-117.

Indhuja, A., Suganthi, K. S., Manikandan, S. and Rajan, K. S. 2013. Viscosity and Thermal Conductivity of Dispersions of Gum Arabic Capped MWCNT in Water: Influence of MWCNT Concentration and Temperature. Article in Press.

Gao, L., Zhou, X. and Ding, Y. 2007. Effective thermal and Electrical Conductivity of Carbon Nanotube Composites. Chem. Phys. Lett. 434 (4–6): 297–300.

Yang, Y., Grulke, E. A., Zhang, Z. G. and Wu, G. 2006. Thermal and Rheological Properties of Carbon Nanotube-in-oil Dispersions. J. Appl Phys. 99: 114307.

Wusiman, K., Jeong, H., Tulugan, H., Afrianto K. and Chung, H. 2013. Thermal Performance of Multi-walled Carbon Nanotubes (MWCNTs) in Aqueous Suspensions with Surfactants SDBS and SDS. International Communications in Heat and Mass Transfer. 41: 28–33.

Paritosh, G., Jorge, L. A., Marsh, C., Carlson, T.A. and Kessler, D.A. 2009. An Experimental Study on the Effect of Ultrasonication on Viscosity and Heat Transfer Performance of Multi-wall Carbon Nanotube-based Aqueous Nanofluids.Int. Journal of Heat and Mass Transfer. 52: 5090-5101.

Nasiri, A., Niasar, M.S., Rashidi, A., Amrollahi, A. and Khodafarin, R., 2011. Effect of dispersion method on thermal conductivity and stability of nanofluid, Exp Therm Fluid Sci. 35:717-23

Aladag, B., Halelfadl, S., Doner, N., Maré, T., Duret, S. andEstellé, P. 2012. Experimental Investigations of the Viscosity of Nanofluids at Low Temperatures. App. Energy. 97: 876-880.

Estellé, P., Halelfadl, S., Doner, N. andMaré, T. 2013. Shear History Effect on the Viscosity of Carbon Nanotubes Water based Nanofluid. Current Nanoscience. 9/2: 225-230

Mahbubul, I. M. and Amalina, M. A. 2012. Latest Developments on the Viscosity of Nanofluids. International Journal of Heat and Mass Transfer. 4: 874-885.

Einstein, A. 1906.EineneueBestimmung der Molekül dimensionen. Annalender Physik. 19: 289–306.

Brinkman, H. C. 1952. The Viscosity of Concentrated Suspensions and Solutions. J Chem. Phys. 20: 571–581.

Batchelor, G. 1977. The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles. J. of Fluid Mech. 83: 97-117.

Krieger, I. M. and Dougherty, T.J. 1959. A Mechanism for Non-Newtonian Flow in Suspension of Rigid Spheres. J. Trans. Soc. Rheol. 3: 137-152

Phuoc, T. X., Massoudi, M. and Chen, R. H. 2011. Viscosity and Thermal Conductivity of Nanofluids Containing Carbon Nanotubes Stabilized by Chitosan.Int. J. Thermal Sci.50: 12-18.

Indhuja, A.,Suganthi, K. S., Manikandan, S. andRajan, K. S. 2013. Viscosity and Thermal Conductivity of Dispersions of Gum Arabic Capped MWCNT in Water: Influence of MWCNT Concentration and Temperature, Article in Press.

Nguyen, C.T., Desgranges, F., Roy, G., Galanis, N., Maré,T., Butcher, S. and Angue Mintsa, H. 2008. Viscosity Data for Al2O3 Water Nanofluid Hysteresis: Is Heat Transfer Enhancement using Nanofluids Reliable?, International Journal of Thermal Sciences. 47: 103-111.

Ruan, B.,and Jacobi, A. M. 2012. Heat Transfer Characteristics of Multi-walled Carbon Nanotubes Suspensions (MWCNT Nanofluids) in Intertube Falling Film Flow. International Journal of Heat and Mass Transfer. 55: 3186-3195.

Chen, L. andXie, H. 2009. Silicon Oil based Multiwalled Carbon Nanotubes Nanofluid with Optimized Thermal Conductivity Enhancement. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 352: 136-140.

Garg, P., Alvarado, J. L., Marsh, C., Carlson, T. A., Kessler, D. A. andAnnamali, K. 2009. An Experimental Study on the Effect of Ultrasonification on Viscosity and Heat Transfer Performance of Multi-wall Carbon Nanotube-based Aqueous Nanofluids. Int. J Heat Mass Transfer. 52: 5090-5101.

Chen, F. L., Yang, J. C., Zhou, W., He Y., Huang, Y. and Jiang, B. 2013. Experimental Study on the Characteristics of Thermal Conductivity and Shear Viscosity of Viscoelastic-fluid based Nanofluids Containing Multiwalled Carbon Nanotubes. Thermochimica Acta. 556: 47-53.

Maré, T., Halelfadl, S., Sow, O., Estellé, P., Duret, S. and Bazantay, F. 2011. Comparison of the Thermal Performances of Two Nanofluids at Low Temperature in a Plate Heat Exchanger. Experimental Thermal and Fluid Science. 35(8): 1535-1543.

Ding, Y., Alias, H., Wen, D. and Williams, R.A. 2006. Heat Transfer of Aqueous Suspensions of Carbon Nanoubes (CNT Nanofluids).International Journal of Heat and Mass Transfer. 49(1-2): 240-250.

Kumaresan, V., Velraj, R. and Das, S. K. 2012. Convective Heat Transfer Characteristics of Secondary Refrigerant based CNT Nanofluids in a Tubular Heat Exchanger .International Journal of Refrigeration. 35: 2287-2296.

Lotfi,R., Rashidi, A. M. and Amrollahi, A. 2012. Experimental Study on the Heat Transfer Enhancement of MWNT-Water Nanofluid in a Shell and Tube Heat Exchanger .International Communications in Heat and Mass Transfer. 39: 108–111.

Faulkner, D., Rector, D. R., Davison, J. J. and Shekarriz, R. 2004. Enhanced Heat Transfer Through the Use of Nanofluids in Forced Convection. Proceeding of the ASME international Mechanical Engineering California. 219-224.

Amrollahi, A., Hamidi, A. A., Rashidi, A. M., Meibodi, M. E. andKashefi, K. 2010. Convection Heat Transfer of Functionalized MWNT in Aqueous Fluids in Laminar and Turbulent Flow at the Entrance Region. International Communications in Heat and Mass Transfer. 37: 717–723.

Downloads

Published

2016-08-16

Issue

Section

Science and Engineering

How to Cite

CONSIDERATION OF CARBON NANOTUBE-BASED NANOFLUID IN THERMAL TRANSFER. (2016). Jurnal Teknologi (Sciences & Engineering), 78(8-4). https://doi.org/10.11113/jt.v78.9583