OPTIMIZATION OF THE STACK IN A STANDING WAVE THERMOACOUSTIC REFRIGERATOR AT DIFFERENT DESIGN TEMPERATURES

Authors

  • Normah Mohd-Ghazali Faculty of Mech. Engineering, Universiti Teknologi Malaysia 81310 UTM Johor Bahru, Johor, Malaysia.
  • Mawahib Hassan El-Fawal Faculty of Eng. & Tech Studies, Univ. of Kordofan, 11111 Elobied, Sudan

DOI:

https://doi.org/10.11113/jt.v78.9594

Keywords:

Thermoacoustic refrigerators, optimization, Lagrange Multiplier method, stack length, stack center position

Abstract

Although numerous successful thermoacoustic refrigerators have been reported to date, the performance of these systems is still lower than their vapor compression counter parts. Optimization is imperative to identify the upper limit of the performance in order to be competitive and accepted by the general public. However, optimization methods adopted so far, experimentally and numerically, involved discrete variations of the selected parameters of interest. This paper presents the results of an optimization using the Lagrange Multiplier method, a mathematical approach never used before. The simultaneous optimization of the stack length and center position at various design temperatures is performed for a standard thermoacoustic refrigerator design. Results show similar pattern and trend with previous results with a 24.7% higher stack coefficient of performance achievable. This is promising considering that only two of the design parameters have been optimized.

References

Hofler T.J. 1986. Thermoacoustic Refrigerator Design and Performance PhD. thesis, Physics Department, University of California; San Diego

Poese M.E., Robert W.M., Garret S.L. 2004. ThermoacousticRefrefrigeration for Ice Cream Sales. J Acoust Soc Am. 107(5): 2480-2486.

Minner B.L., Braun J.E., Mongeau L.G. 1996. Optimizing the Design of Thermoacoustic Refrigerator. Proceedings of the International Refrigeration and Air Conditioning Conference. Paper 343.

Reid R.S. and Swift G.W. 2000. Experiment with Flow-through Thermoacoustic Refrigerator. J Acoust Soc Am. 108: 2835 - 2842.

Tijani M.E.H., Zeegers J.C.H., De Waele A.T.A.M. 2002. Construction and Performance of a Thermoacoustic Refrigerator. Cryogenics. 42: 59-66.

Hariharan N.M., Sivashanmugam P., Kasthurirengan S. 2013. Experimental Investigation of a Thermoacoustic Refrigerator Driven by a Standing Wave Twin Thermoacoustic Prime Mover. Int J Refrig. 36: 2420-2425.

Reid R.S. and Swift G.W. 2000. Experiment with Flow-through Thermoacoustic Refrigerator. J. AcoustSoc Am.. 108 (6).

Yougu L., Minner B.L., George T., Chiu C., Luc Mongeau, Braun J.E. 2002. Adaptive Tuning of an Electrodynamically Driven Thermoacoustic Cooler. J. Soc. Am. 111(3).

Tijani M.E.H., Zeegers J.C.H., De Waele A.T.A.M. 2002. Prandtl Number and Thermoacoustic Refrigerators. J. Acoust. Soc. Am. 112(1).

Zoontjens L., Howard C.Q., Zander A.C., Cazzolato B.S. 2005. Feasibility Study of an Automotive Thermoacoustic Refrigerator. Proceedings of Acoustics, Busselton, Western Australia .

Zoontjens L., Howard C.Q., Zander A.C., Cazzolato B.S. 2006. Modelling and Optimization of Acoustic Inertance Segments for Thermoacoustic Devices. Proceeding of Acoustic, Busselton, Western Australia.

Paek I., Braun J.E., Mongeau L. 2007. Evaluation of Standing-wave Thermoacoustic Cycles for Cooling Applications. Int. Journal of Refrigeration. 30: 1059-1071.

Tasnim S.H., Mahmud S., Fraser R.A. 2011. Second Law Analysis of Porous Thermoacoustic Stack Systems. Applied Thermal Engineering. 31:2301-2311.

Dhuley R.C. and Atrey M.D. 2011. Investigation on a Standing Wave Thermoacoustic Refrigerator. International Crycooler Conference, Inc, Boulder, CO, USA.

Tasnim SH., Mahmud S., Fraser R.A. 2011. Measurement of Thermal Field at Stack Extrimities of a Standing Wave Thermoacoustic Heat Pump. Frontiers in Heat and Mass Transfer. 2:013006.

Alahmer A., Omar M., Al-Zubi M. 2013. Demonstrating of Standing–wave – Thermoacoustic Refrigerator. Int. J. of Thermal and Environmental Engineering. 6(2): 75-81.

Kulcsar, T. and Timar, I. 2012.Mathematical Optimization Design - Overview and Application. ACTA TechnicaCorviniensis - Bulletin of Engineering. 21-26.

Tijani, M. E. H., Zeegers, J. C. H. and de Waele, A. T. A. M. 2002.Design of Thermoacoustic Refrigerators. Cryogenics. 42(1): 49-57.

Swift, G. W. 2002. Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators. New York, USA. Acoust. Soc. Am.

Tijani, M. E. H. 2001. Loudspeaker-Driven Thermo-Acoustic Refrigeration.PhD Dissertation, Physics Department, University of Eindhoven.

Ryan, T. S. 2009. Design and Control of a Standing Wave Thermoacoustic Refrigerator. MSc. Thesis, Department of Mechanical Engineering and Materials Science, University of Pittsburgh.

Arnott W.., Bass, H.E., Raspet, R.1991. General Formulation of Thermoacoustics for Stacks Having Arbitrarily-Shaped Pore Cross-Sections. J. Acoust. Soc. Am. 90: 3228-3237.

Swift, G. W. 1988. Thermoacoustic Engines. J. Acoust. Soc. Am. 84: 1145-1180.

Merkli, P. and Thomann, H. 1975. Transition to Turbulence in Oscillating Pipe Flow. Journal of Fluid Mechanics. 68: 567-576.

Mawahib H.A.E. 2015. Thermoacoustic Refrigerator Design and Performance PhD. thesis, Fac. Of Mech. Engineering, Universiti Teknologi Malaysia; Malaysia.

Downloads

Published

2016-08-16

Issue

Section

Science and Engineering

How to Cite

OPTIMIZATION OF THE STACK IN A STANDING WAVE THERMOACOUSTIC REFRIGERATOR AT DIFFERENT DESIGN TEMPERATURES. (2016). Jurnal Teknologi (Sciences & Engineering), 78(8-4). https://doi.org/10.11113/jt.v78.9594