• Nor Atiqah Zolpakar Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
  • Normah Mohd-Ghazali Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia




Optimization, genetic algorithm, thermoacoustic refrigerator, coefficient of performance


Current non-environmentally friendly refrigerants released into our environment have caused serious concern over reports of the depleting of the ozone layer and global warming. Alternative technologies and efficient energy-related systems are being investigated to perhaps reduce if not stop the environmental degradation. This paper reports the outcomes of an optimization procedure performed on an environmentally friendly standing wave thermoacoustic refrigerator. A typical system to date has a low coefficient of performance (COP) and thus is not attractive to the general public. Optimization is completed using genetic algorithm over four design variables; the stack length and center position within a thermoacoustic resonator, the blockage ratio, and drive ratio. Optimization results show a maximum COP obtainable at 1.64. The outcomes indicate a potential for better thermoacoustic refrigerators in future.


Swift, G. W. 2003. Thermoacoustic: A Unifying Perspective For Some Engines And Refrigerator. Acoust Soc Am. 113(5): 2379-81.

Garret, S. L. 2004. Thermoacoustic Engines and Refrigerators. Am. J. Phys. 72: 11-17.

Wetzel, M., Herman, C. 1997. Design Optimization of Thermoacoustic Refrigerator. Int. J. Refrig. 20: 3-21.

Tijani, M. E. H. Zeegers, J. C. H. De Waele, A. T. A. M. 2002. Design of Thermoacoustic Refrigerators. Cryogenics. 42: 49-57.

Babaei, H. Kamran, S. 2008. Design and Optimization of Thermoacoustic Devices. Energy Conversion and Management. 49: 3585-3598.

Zink, F. Hamish, W. Rosalinda , A. Laura, S. 2009. Geometric Optimization Of Thermoacoustic Regenerator. International Journal of Thermal Sciences. 48: 2309-2322.

Minner, B. L., Braun, J. E. Mongeau, L.,G. 1997 Theoretical Evaluation of the Optimal Performance of a Thermoacoustic Refrigerator. ASHRAE Translations: Symposia. 103: 873-887.

Emmanuel, C. N. Azrai, A. 2009. Experimental Study on the Performance of the Thermoacoustic Refrigerating System. Applied Thermal Engineering. 29: 2672-2679.

Tasnim, S. H., Mahmud, S., Fraser, R. A. 2012. Effects of Variation Fluids and Operating Conditions on the Performance of a Thermoacoustic Refrigeration. International Communication in Heat and Mass Transfer. 39: 62-768.

Srikitsuwan, S., Kuntanapreeda, S., Vallikul, P. 2007. A Genetic Algorithm for Optimization Design of Thermoacoustic Refrigerators. Proceedings of the 7th WSEAS International Conference on Simulation, Modelling and Optimization, Beijing, China, 15-17 September. 207-212.

Zolpaakar, N. A, Ghazali, N. M., El-Fawal, M. H. 2016. Performance Analysis of the Standing Wave Thermoacoustic Refrigerator: A Review. Renewable and Sustainable Energy Reviews. 54: 626-634.

Tijani, M. E. H. 2001. Loudspeaker-Driven Thermoacoustic Refrigeration, Ph.D. Thesis, University of Eindhoven, Netherlands.

Zolpaakar, N. A, Ghazali N. M., Ahmad, R. 2014. Simultaneous Optimization of Four Parameters in the Stack Unit of a Thermoacoustic Refrigerator. International Journal of Air-Conditioning and Refigeration. 22: 1450011.

Zolpaakar, N. A., Ghazali, N. M., Ahmad, R. 2017. Optimization of Stack Unit in a Thermoacoustic Refrigerator. Heat Transfer Engineering. 4: 138.

Deb, K. 2001. Multi-Objective Optimization Using Evolutionary Algorithm. John Wiley & Sons, Ltd. 84-91.

MATLAB version R2011b, UTM, Malaysia, The Mathwork Inc., 2011.

Wheatley, J. C., Hofler, T., Swift, G. W., Migliori, A. 1985. Understanding Some Simple Phenomena in Thermoacoustic with Applications to Acoustical Heat Engines. Am J Phys. 53:147-62.




How to Cite

OPTIMIZATION OF A THERMOACOUSTIC REFRIGERATOR WITH AN EVOLUTIONARY ALGORITHM APPROACH. (2016). Jurnal Teknologi, 78(9-2). https://doi.org/10.11113/jt.v78.9650