STRESS RESPONSES IN PIGMENTED BACILLUS PUMILUS SF14

Authors

  • Saad Sabah Fakhry Ministry of Higher Education, Scientific Research, Science and Technology- Environment and Water Directorate Food Contamination Research Center-Iraq-Baghdad
  • Manal Abdalteef Hasan Ministry of Higher Education, Scientific Research, Science and Technology- Environment and Water Directorate Food Contamination Research Center-Iraq-Baghdad
  • Saba Talib Hashim Department of Biology, College of Science, ALMustansiriyah University, Baghdad, Iraq
  • Zahraa Abbas Jebur Ministry of Higher Education, Scientific Research, Science and Technology- Environment and Water Directorate Food Contamination Research Center-Iraq-Baghdad
  • Farqad Farhan Abdulhameed Ministry of Higher Education, Scientific Research, Science and Technology- Environment and Water Directorate Food Contamination Research Center-Iraq-Baghdad

DOI:

https://doi.org/10.11113/jt.v79.9812

Keywords:

Bacillus pumilus, sporulation, UV radiation, resistance, mutant

Abstract

Microbial producers of carotenoids belongs to a various species of unicellular algae, filamentous fungi and several bacteria. A recent report has shown that up to 15% of aerobic spore-formers identified from soil samples are pigmented and in many cases the pigments are carotenoids. Pigmented spore-forming Bacillus was obtained from culture maintained in the microbial culture collection of Department of Structural Functional Biol. University of Naples Federico II and partially characterized their pigments. A classical mutagenesis approach has been used to obtain mutant strains producing altered pigments or no pigments. Our results suggest that pigmentation in spore’s represent an additional, and may be alternative protection strategy against oxidative stress. A mutants (SF214-M1, SF214-M2, SF214-M3 and SF214-M4) of Bacillus pumilus strain SF214 producing a carotenoids water soluble-pigment were obtained after treatment with the mutagenic agent N-Methyl-N-nitroso-N'-nitroguanidine (NTG). Several microbiological and biochemical properties of these 4 strains were analyzed and the results were differences between wild type and other four mutants in producing pigments, color changing, sporulation, cannot produce spores after mutation and sporulation efficiency was constant with color development.

References

Henriques, A. O., and C. P. Jr. Moran. 2007. Structure, Assembly, And Function Of The Spore Surface Layers. Annual Review of Microbiology. 61: 555-588. https://www. DOI: 10.1146/annurev.micro.61.080706.093224.

Mitchell, C., S. Iyer, J. F. Skomurski, and J. C Vary. 1986. Red Pigment In Bacillus Megaterium Spores. Applied and Environmental Microbiology. 52: 64-67.

Fritze, D., and R. Pukall. 2001. Reclassification Of Bioindicator Strains Bacillus Subtilis DSM 675 And Bacillus Subtilis DSM 2277 As Bacillus Atrophaeus. International Journal of Systematic and Evolutinary Microbiology. 51: 35-37.

Suresh, K., S. R. Prabagaran, S. Sengupta, and S. Shivaji 2004. Bacillus Indicus Sp. Nov., An Arsenic-Resistant Bacterium Isolated From An Aquifer In West Bengal, India. International Journal of Systematic and Evolutionary Microbiology. 54: 1369-1375. https://www.DOI 10.1099/ijs.0.03047-0.

Yoon, J. H., C. H. Lee, and T. K. Oh. 2005. Bacillus Cibi Sp. Nov., Isolated From Jeotgal, A Traditional Korean Fermented Seafood. International Journal of Systematic and Evolutionary Microbiology. 55: 733-736. https://www.DOI:10.1099/ijs.0.63208-0.

Agnew, M. D., S. F. Koval, and K. F. Jarrell. 1995. Isolation And Characterisation Of Novel Alkaliphiles From Bauxite-Processing Waste And Description Of Bacillus Vedderi Sp. Nov., A New Obligate Alkaliphile. Systematic and Applied Microbiology, 18: 221-230. https://books.google.iq/books?isbn=9401140200.

Yoon, J. H., S. S. Kang, K. C. Lee, Y. H. Kho, S. H. Choi, K. H. Kang, and Y. H. Park. 2001. Bacillus Jeotgali Sp. Nov., Isolated From Jeotgal, Korean Traditional Fermented Seafood. International Journal of Systematic and Evolutionary Microbiology. 51: 1087-1092. https://www.DOI:10.1099/00207713-51-3-1087.

Li, Z., Y. Kawamura, O. Shida, S. Yamagata, T. Deguchi, and T. Ezaki. 2002. Bacillus Okuhidensis Sp. Nov., Isolated From The Okuhida Spa Area Of Japan. International Journal of Systematic and Evolutionary Microbiology. 52: 1205-1209. https://www.DOI:10.1099/00207713-52-4-1205.

Nielsen, P., D. Fritze, and F.G. Priest. 1995. Phenetic Diversity Of Alkaliphilic Bacillus Strains: Proposal For Nine New Species. Microbiology. 141: 1745-1761. https://www.Doi:10-1099/13500872-141-7-1745.

Ruger, H. J., J. A. C. Koploy. 1980. DNA Base Composition Of Halophilic And Nonhalophilkic Bacillus Firmus Strains Of Marine Origin. Microbial Ecology. 6: 141-146. https://www.Doi:10.1007/BF02010552.

Khaneja, R., L .Perez-Fons, S. Fakhry, L. Baccigalupi, S. Steiger, E. To, G. Sandmann, TC. Dong, E. Ricca, PD. Fraser, and S.M .Cutting. 2010. Carotenoids Found In Bacillus. Journal of Applied Microbiology. 108: 1889-1902. https://www.Doi: 10.1111/j.13652672.2009.04590.x.

Duc, L. H., P. Fraser, and S. M. Cutting. 2006. Carotenoids Present In Halotolerant Bacillus Spore Formers. Fems Microbiology Letters. 255: 215-224. https://www.Doi:10.1111/j.1574-6968.2005.00091.x.

Mares-Perlman, J. A., A. E. Millen, T. L. Ficek, and S. E. Hankinson. 2002. The Body of Evidence to Support a Protective Role for Lutein and Zeaxanthin In Delaying Chronic Disease. Overview. Journal of Nutrition. 132: 518S-524S. https://www.ncbi.nlm.nih.gov/pubmed/11880585.

Nicholson, W. L., N. Munakata, G. Horneck, H. J. Melosh, and P. Setlow. 2000. Resistance Of Bacillus Endospores To Extreme Terrestrial And Extraterrestrial Environments. Microbiology and Molecular Biology Reviews. 64: 548-572. https://www.ncbi.nlm.nih.gov/pubmed/10974126.

Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory. Cold Spring Harbor. 143-149. www.cshpress.com/dfult.tpl?action=full--eqskudatarq=399.

Ikeda, M., S. Nakagawa. 2003. The Corynebacteriumglutanicum Genome: Features And Impact On Biotechnological Processes. Applied Microbiology and Biotechnology. 62: 99-109. Doi:10.1007/s00253-003-1328-1.

Hullo, M-F., I. Moszer, A. Danchin, and I. Martin-Verstraete. 2001. CotA Of Bacillus Subtilis Is A Copper-Dependent Laccase. Journal of Bacteriology. 183: 5426-5430. https://www.ncbi.nlm.nih.gov./pubmed/11514528.

A. 1999. Bacillus subtilis spore coat. Microbiology and Molecular Biology Reviews. 63: 1-20. https://www.ncbi.nlm.nih.gov./pubmed/10066829.

Slieman, T. A., and W. L. Nicholson. 2000. Artificial And Solar UV Radiation Induces Strand Breaks And Cyclobutane Pyrimidine Dimers In Bacillus Subtilis Spore DNA. Applied and Environmental Microbiology. 66: 199-205.

Friedberg, E. C., G. C. Walker, and W. Siede. 1995. DNA Repair And Mutagenesis. American Society for Microbiology, Washington, DC.

Downloads

Published

2017-06-21

Issue

Section

Science and Engineering

How to Cite

STRESS RESPONSES IN PIGMENTED BACILLUS PUMILUS SF14. (2017). Jurnal Teknologi, 79(5). https://doi.org/10.11113/jt.v79.9812