KESAN PEMBAKARAN PADA KEADAAN NISBAH KESETARAAN ɸ=0.8333 MENGGUNAKAN DWI PEMUSAR ALIRAN JEJARIAN

Authors

  • Muhammad Roslan Rahim Department of Aeronautical, Automotive & Ocean Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohammad Nazri Mohd Jaafar Institute for Vehicle Systems and Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v79.9855

Keywords:

Emissions, Double Radial swirler, Combustion, Flame length

Abstract

Formation of nitrogen oxide (NOx), carbon monoxide (CO) and other emissions is increasing dramatically in the atmosphere. Due to this pressing issue, a study on combustion performance was conducted using a double radial swirler. In this study, a weak swirler with an angle of 30º is set as a primary swirler and strong swirlers each with an angle of 40º, 50º and 60º are set as secondary swirler. Combinations of these swirlers have increased internal recirculation of hot air and help to complete the mixing of fuel and air during combustion. Results show that the combination of 30º/60º swirler produced the best, more stable and shorter flame than the other combinations. Formation of NOX from the 30º/60º swirlers at equivalence ratio of 0.8333 is 27.3% lower than that from the combined 30º/40º swirlers. Other emissions such as CO, CO2 and UHC (Unburned Hydrocarbons) also show a reduction of 12.71%, 10.6% and 5.3%, respectively in the 30º/60º swirlers compared to those from the 30º/40º swirlers.

References

Beér, J. M. 2000. Combustion Technology Developments In Power Generation In Response To Environmental Challenges. Progress in Energy and Combustion Science. 26(4): 301-327.

Rahim, M. R., Jaafar, M. N. M. 2015. Kesan Sudut Pusaran Terhadap Pembakaran Menggunakan Pemusar Dwi Aliran. Jurnal Teknologi. 77(8): 37-45.

Mohammad Nazri, M. J., & Rahim, M. R. 2014. Effect Of Flame On Various Swirler Angle In Combustion Performance. American-Eurasian Journal of Sustainable Agriculture. 8(7): 57-61.

Syred, N., & Beer, J. M. 1974. Combustion In Swirling Flows: A Review. Combustion And Flame. 23(2): 143-201.

Ramadan, O. B. A. 2008. Design and Evaluation of a Low NOX Natural Gas-Fired Conical Wire-Mesh Duct Burner for a Micro-Cogeneration Unit. Doctoral dissertation. Carleton University.

Terasaki, T., & Hayashi, S. 1996, December. The Effects Of Fuel-Air Mixing On NOX Formation In Non-Premixed Swirl Burners. Symposium (International) on Combustion. Elsevier. 26(2): 2733-2739.

Beér, J. M., & Chigier, N. A. 1972. Combustion Aerodynamics. New York.

Al-Kabie, H. S. 1989, Radial Swirlers For Low Emissions Gas Turbine Combustion. University Of Leeds, Dept. of Fuel & Energy, PhD.

Sheen, H. J., W. J. Chen, S. Y. Jeng, T. L. Huang. 1996. Correlation of Swirl Number for Radial-Type Swirl Generator. Institute of Applied Mechanics, National Taiwan University. Experimental Thermal and Fluid Science., Elsevier Science Inc. 12: 444-451.

Lefebvre, A. H. 1983. Gas Turbine Combustion. Hemisphere Publishing Corporation.

Khezzar, L. 1998. Velocity Measurement in the Near Field of a Radial Swirler. Experimental Thermal and Fluid Science. Elsevier Science Inc. 16: 230-236.

Jaafar, M., Nazri, M., Jusoff, K., Osman, M. S., & Ishak, M. S. A. 2011. Combustor Aerodynamic Using Radial Swirler. International Journal of Physical Sciences. 6(13): 3091-3098.

Tomohiko Furuhata, Shunsuke Amano, Kousaku Yotoriyama, Masataka Arai. 2007. Development of Can-Type Low NOX Combustor for Micro Gas Turbine (Fundamental Characteristics in a Primary Combustion Zone with Upward Swirl). ScienceDirect, Fuel. Elsevier Ltd. 86(2007): 2463-2474.

Khanafer, K., & Aithal, S. M. 2011. Fluid-dynamic and NOX Computation In Swirl Burners. International Journal of Heat and Mass Transfer. 54(23): 5030-5038.

Jaafar, M. N. M., & Ishak, M. S. A. 2012. Teknik Pembakaran Hijau: Pembakar Berbahan Api Cecair. Penerbit UTM Press.

Delavan. 2000. A Total Look at Oil Burner Nozzles. Delavan Spray Technologies: Fuel Metering Production Operation, South Carolina.

British Standards Institution, BS 1041:1992. Temperature Measurement. Part 4. Guide to the Selection and Used of Thermocouples.

Fricker, N., & Leuckel, W. 1976. Characteristics Of Swirl-Stabilized Natural-Gas Flames. 3. Effect Of Swirl And Burner Mouth Geometry On Flame Stability. Journal of the Institute of Fuel. 49(400): 152-158.

Escott, N. H. 1993. Ultra Low NOx Gas Turbine Combustion Chamber Design. University of Leeds, Department of Fuel and Energy, PhD.

Morcos, V. H., & Abdel-Rahim, Y. M. 1999. Parametric Study of Flame Length in Straight and Swirl Light Fuel Oil Burners. Journal of the Institute of Fuel. 979-985.

Rahim, M. R., & Jaafar, M. N. M. 2015. Effect of Flame Angle Using Various Swirler Angle in Combustion Performance. Jurnal Teknologi. 72(4): 71-75.

Eldrainy, Y. A., bin Ahmad, M. F., & Jaafar, M. N. M. 2009. Investigation Of Radial Swirler Effect On Flow Pattern Inside A Gas Turbine Combustor. Modern Applied Science. 3(5): 21.

Downloads

Published

2017-01-31

Issue

Section

Science and Engineering

How to Cite

KESAN PEMBAKARAN PADA KEADAAN NISBAH KESETARAAN ɸ=0.8333 MENGGUNAKAN DWI PEMUSAR ALIRAN JEJARIAN. (2017). Jurnal Teknologi, 79(2). https://doi.org/10.11113/jt.v79.9855