FORCE CHARACTERIZATION OF A TUBULAR LINEAR ELECTROMAGNETIC ACTUATOR USING FINITE ELEMENT ANALYSIS METHOD (FEM)

Authors

  • Mariam Md Ghazaly Center for Robotics and Industrial Automation (CeRIA), Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia 76100 Durian Tunggal, Melaka, Malaysia
  • Tawfik Ahmed Yahya Center for Robotics and Industrial Automation (CeRIA), Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia 76100 Durian Tunggal, Melaka, Malaysia
  • Aliza Che Amran Faculty of Technical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia 100 Durian Tunggal, Melaka, Malaysia
  • Zulkeflee Abdullah Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Mohd Amran Md Ali Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Ahmad Hilkam Jamaludin Center for Robotics and Industrial Automation (CeRIA), Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia 76100 Durian Tunggal, Melaka, Malaysia
  • Nursabillilah Mohd Ali Center for Robotics and Industrial Automation (CeRIA), Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia 76100 Durian Tunggal, Melaka, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.9901

Keywords:

Electromagnetic actuator, linear actuator, Halbach array, reluctance, permanent magnet

Abstract

This paper presents an extensive characterising study of two novel electromagnetic actuators, each with different constructions and characteristics aiming to analyse the behaviour and output characteristics of the two designs. The two actuators are Tubular Linear Reluctance Actuator (TLRA) and Tubular Linear Permanent magnet (TLPM) with Halbach array actuator. The study covered the variation of three parameters, which are the actuator air gap, number of turns and actuator size. A comparative section was also presented for the purpose of comparison. The study concentrated extensively on the two characteristics of both actuators known as output thrust force and working range as they are considered as two main concerns of any actuator design. The simulation was used to show the differences between the two designs in many design aspects such as force, displacement and effects of parameters variations. The applied simulation was performed using 3D Finite-element Ansys software, which is capable of showing the magnetic field distribution in the whole actuator and predicting the strength and length of the output stroke.

References

M. M. Ghazaly, L. T. Kang, C. Y. Piaw, and S. Kaiji. 2015. Force Optimization of an Force Artificial Muscle Actuated Underwater Probe System using Linear Motion Electrostatic Motor. J. Teknologi. 9(2): 113-118.

W. R. Cawthorne and S. Petreanu.1999. Development of A Linear Alternator-engine for Hybrid Electric Vehicle Applications. IEEE Trans. 48(6): 1797-1802.

W. J. Kim, D. L. Tumper and J. H., Lang. 1998. Modelling and Vector Control of Planar Magnetic Levitator. IEEE Trans. On Industry Applications. 34(6): 1254-1262.

J. Lin, K. W. E. Cheng, Z. Zhang, N. C. Cheung and X. Xue. 2015. Adaptive Sliding Mode Technique-based Electromagnetic Suspension System with Linear Switched Reluctance Actuator. IET Electric Power Applications. 9(1): 50-59.

J. Ji, Z. Ling, J. Wang, W. Zhao, G. Liu and T. Zheng. 2015. AU-30 Design and Analysis of a New Halbach Magnetized Magnetic Screw for Artificial Hearts. IEEE Trans. Magn. 47(10): 4480.

K. H., I. B. and K. Krasteva. 2011. Static Force Characteristics of Electromagnetic Actuators for Braille Screen. ELEC. ENERG. 24(2): 157-167.

J. Ponmozhi, C. Frias, T. Marques, and O. Frazo. 2012. Smart Sensors/Actuators For Biomedical Applications: Review. Meas. J. Int. Meas. Confed. 45(7): 1675-1688.

K. M. Lee, Y. Kim, J. K. Paik, and B. Shin. 2015. Clawed Miniature Inchworm Robot Driven by Electromagnetic Oscillatory Actuator. 2015. J. Bionic Eng. 12(4): 591-526.

J. Zhu, H. L and Y. Guo. 2005. A Tubular Linear Motor for Micro Robotic applications. IEEE Int. Conf. Mechatronics. Taipei, Taiwan. 596-601.

B. M. Dutoit, P. A. Besse, and R. S. Popovic. 2003. Planar Multidipolar Electromagnetic Actuators. IEEE Trans. Magn. 39(2): 1026-1034.

B. Lesquesne. 1996. Permanent Magnet Linear Motors for Short Strokes. IEEE Trans. On Industry Applications. 32(1): 161-168.

J. Wang, D. Howe and G. W. Jewell. 2004. Analysis and Design Optimization of an improved Axially Magnetized Tubular Permanent Magnet Machine. IEEE Trans. Energy Convers. 19(2): 289-295.

Z. Q. Zhu, P. J. Hor, D. Howe and J. R. Jones. 1997. Novel Linear Tubular Brushless Permanent Magnet Motor. Int. Conf. Electr. Machines Drives. Cambridge, MA. 444: 91-95.

K. Halbach. 1981. Design of Permanent Multipole Magnet with Oriented Rate Earth Cobalt Material. Nuclear Instruments and Method. 169(1): 1-10.

J. F. Eastham, R. Akmese and H. C. Lai. 1990. Optimum Design of Brushless Tubular Linear Machines. IEEE Trans. On Magnetics. 26(5): 2547-2549.

C. Urban and R. Witt. 2012. Development of a Bendable Permanent-Magnet Tubular Linear Motor. IEEE Trans on Magnetic. 48(8): 2367-2373.

N. Bianchi, S. Bolognani and F. Tonel. 2001. Design Consideration for a Tubular Linear PM Servo Motor. EPE J. 11(3): 41-47.

Z. Q. Zhu and D. Howe. 2001. Halbach Permanent Magnet Machines and Applications : A REVIEW. IEE Proc.-Electr. Power Appl. 148(4): 299-308.

J. F. Pan, Y. Zou, and G. Cao. 2013. An Asymmetric Linear Switched Reluctance Motor. IEEE Trans. Energy Convers. 28(2): 444-451.

J. Lee, E. M. Dede, D. Banerjee, and H. Iizuka. 2012. Magnetic Force Enhancement in A Linear Actuator by Air-gap Magnetic field Distribution Optimization and Design. Finite Elem. Anal. Des. 58: 44-52.

Y. Li, T. Cheng, D. Xuan and Y. Shen. 2015. Force Characteristic of a Mnetic Actuator for Separable Electric Connector based on Conical Air gap. Advance in Mechanical Engineering. 7(2): 1-8.

Downloads

Published

2016-10-30

Issue

Section

Science and Engineering

How to Cite

FORCE CHARACTERIZATION OF A TUBULAR LINEAR ELECTROMAGNETIC ACTUATOR USING FINITE ELEMENT ANALYSIS METHOD (FEM). (2016). Jurnal Teknologi, 78(11). https://doi.org/10.11113/jt.v78.9901