EVALUATION OF RENNELLIA ELLIPTICA AS POTENTIAL ANTIPLASMODIAL HERBAL REMEDY

Authors

  • Che Puteh Osman Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Nor Hadiani Ismail Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor, Malaysia
  • Rohaya Ahmad Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Aty Widyawaruyanti Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60286, Indonesia
  • Lidya Tumewu Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60286, Indonesia
  • Chee Yan Choo MedChem Herbal Research Group, Faculty of Pharmacy, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor, Malaysia
  • Sharinah Ideris MedChem Herbal Research Group, Faculty of Pharmacy, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jt.v79.9912

Keywords:

Rennellia elliptica, antiplasmodial, anthraquinones, Plasmodium, malaria

Abstract

Rennellia elliptica (Rubiaceae) has been used by local Jakun Community in the Endau Rompin State Park for the treatment of jaundice. Previous study has revealed the antiplasmodial activity of the root extract and major anthraquinones isolated from the roots. The present study entails the optimization of extraction methods, qualitative and quantitative analyses of selected marker anthraquinones and in vivo antiplasmodial activity along with toxicity and inhibition of β-hematin in vitro. HPLC profile showed the present of marker compounds as major constituents with content ranging 3-12 µg/g extract. The root extract showed potent antiplasmodial activity against rodent malaria, Plasmodium berghei with ED50 value of 1.23 µg/ml BW. The major anthraquinones, damnacanthal and nordamnacanthal showed significant inhibition against β-hematin formation via lipids and HRP2 catalyses. However, the root extract is slightly toxic against hepatocyte cell. These data suggests that R. elliptica is a potential herbal remedy for malaria treatment and antiplasmodial of the root extract possibly due to the action of major anthraquinones. 

References

WHO. 2014. World Malaria Report 2014. ed. Switzerland: WHO, 2014.

Pink, R., A. Hudson, M.-A. Mouries, and M. Bendig. 2005. Opportunities and Challenges in Antiparasitic Drug Discovery, Nature Reviews Drug Discovery. 4 (9): 727-740

Mambu, L. and P. Grellier. 2007. Antimalarial Compounds from Traditionally Used Medicinal Plants. in Bioactive Natural Products: Detection, Isolation and Structural Determination. S. M. Colegate and R. J. Molyneux, Eds. 2th Florida: CRC Press.

Phillipson, J. D. and C. W. Wright. 1991. Can Ethnopharmacology Contribute To The Development Of Antimalarial Agents? Journal of Ethnopharmacology. 32(1-3): 155-165.

Biagini, G. A., P. M. O'Neill, A. Nzila, S. A. Ward, and P. G. Bray. 2003. Antimalarial Chemotherapy: Young Guns or Back to the Future? Trends In Parasitology. 19 (11): 479-487.

Cowman, A. F. and S. J. Foote. 1990. Chemotherapy and Drug Resistance in Malaria. International Journal for Parasitology. 20(4): 503-513.

Dharani, N., G. Rukunga, A. Yenesew, A. Mbora, L. Mwaura, I. Dawson, et al. 2010. Common Antimalarial Trees and Shrubs of East Africa : a Description of Species and a Guide to Cultivation and Conservation Through Use. Nalrobi, Kenya: The World Agroforestry Centre (ICRAF).

Sittie, A. A., E. Lemmich, C. E. Olsen, L. Hviid, A. Kharazmi, F. K. Nkrumah, et al. 1999. Structure-activity Studies: In vitro Antileishmanial and Antimalarial Activities of Anthraquinones from Morinda lucida. Planta Medica. 65: 259-261.

Eyong, K. O., G. N. Folefoc, V. Kuete, V. P. Beng, K. Krohn, H. Hussain, et al. 2006. Newbouldiaquinone A: A Naphthoquinone-anthraquinone Ether Coupled Pigment, as a Potential Antimicrobial and Antimalarial Agent from Newbouldia laevis, Phytochemistry. 67(6): 605-609.

Abegaz, B. M., M. Bezabih, T. Msuta, R. Brun, D. Menche, J. Muhlbacher, et al. 2002. Gaboroquinones A and B and 4'-O-Demethylknipholone-4'-O-b-D-glucopyranoside, Phenylanthraquinones from the Roots of Bulbine frutescen. Journal of Natural Products. 65(8): 1117-1121.

Ajaiyeoba, E. O., J. S. Ashidi, P. J. Houghton, and C. W. Wright. 2008. Antiplasmodial Compounds from Cassia siamea Stem Bark Extract, Phytotherapy Research. 22(2): 254-255.

Abdissa, N., M. Induli, H. M. Akala, M. Heydenreich, J. O. Midiwo, A. Ndakala, et al. 2013. Knipholone Cyclooxanthrone and an Anthraquinone Dimer with Antiplasmodial Activities from the Roots of Kniphofia Foliosa. Phytochemistry Letters. 6(2): 241-245.

Onegi, B., C. Kraft, I. Köhler, M. Freund, K. Jenett-Siems, K. Siems, et al. 2002. Antiplasmodial Activity of Naphthoquinones and One Anthraquinone from Stereospermum kunthianum, Phytochemistry. 60 (1): 39-44.

Kopa, T. K., A. T. Tchinda, M. F. Tala, D. Zofou, R. Jumbam, H. K. Wabo, et al. 2014. Antiplasmodial Anthraquinones and Hemisynthetic Derivatives from the Leaves of Tectona Grandis (Verbenaceae). Phytochemistry Letters. 8: 41-45

Endale, M., A. Ekberg, J. Alao, H. Akala, A. Ndakala, P. Sunnerhagen, et al. 2012. Anthraquinones of the Roots of Pentas micrantha. Molecules. 18(1): 311.

Endale, M., J. P. Alao, H. M. Akala, N. K. Rono, S. Derese, A. Ndakala, et al. 2012. Antiplasmodial Quinones from Pentas longiflora and Pentas lanceolata. Planta Medica. 78(1): 31-35

Burkill, I. H. 1966. A Dictionary of the Economic Products of Malay Peninsular. Kuala Lumpur: Ministry of Agriculture.

Wong, K. M. 1989. Rubiaceae (from the genus Rubia). in Tree Flora of Malaya; A Manual for Foresters. vol. 4, F. S. P. Ng, Ed.: Longman Malaysia.

Ismail, I., A. C. Linatoc, M. Mohamed, and L. Tokiman. 2015. Documentation of Medicinal Plants Traditionally Used by the Jakun People of Endau-Rompin (PETA) for Treatments of Malaria-Like Symptoms, Jurnal Teknologi. 77(31): 63-69.

Yusoff, N. I., J. Latip, H. L. Liew, and A. Latiff. 2004. Kajian Fitokimia Awal Tumbuhan Taman Negeri Endau Rompin, Pahang: Antrakuinon daripada Akar Rennellia elliptica Korth. (Rubiaceae). Taman Endau Rompin: Pengurusan Persekitaran Fizikal dan Biologi, S. Mohamad Ismail, M. Mat Isa, W. Y. W. Ahmad, M. R. Ramli, and A. Latiff, Eds.: Jabatan Perhutanan Semenanjung Malaysia.

Osman, C. P., N. H. Ismail, R. Ahmad, N. Ahmat, K. Awang, and F. M. Jaafar. 2010. Anthraquinones with Antiplasmodial Activity from the Roots of Rennellia elliptica Korth. (Rubiaceae). Molecules. 15(10): 7218-7226.

Peters, W. 1965. Drug Resistance in Plasmodium berghei. I. Chloroquine Resistance. Experimental Parasitology. 17(1): 80-89.

Xuan Trang, D. T., N. T. Huy, D. T. Uyen, M. Sasai, T. Shiono, S. Harada, et al. 2006. Inhibition Assay of β-hematin Formation Initiated By Lecithin For Screening New Antimalarial Drugs. Analytical Biochemistry. 349(2): 292-296.

Huy, N. T., D. T. Uyen, M. Sasai, D. T. X. Trang, T. Shiono, S. Harada, et al. 2006. A Simple and Rapid Colorimetric Method to Measure Hemozoin Crystal Growth in Vitro. Analytical Biochemistry. 354(2): 305-307.

Jamal, J. A. 2006. Malay Traditional Medicine; An Overview of Scientific and Technological Progress. TECH Monitor. 37-49.

Osman, C. P., N. H. Ismail, A. Wibowo, and R. Ahmad. 2016. Two New Pyranoanthraquinones from the Root of Rennellia Elliptica Korth. (Rubiaceae). Phytochemistry Letters. 16: 225-229.

Rodríguez-Meizoso, I., F. R. Marin, M. Herrero, F. J. Señorans, G. Reglero, A. Cifuentes, et al. 2006. Subcritical Water Extraction of Nutraceuticals with Antioxidant Activity from Oregano. Chemical and functional characterization, Journal of Pharmaceutical and Biomedical Analysis. 41(5): 1560-1565.

Ju, Z. Y. and L. R. Howard. 2003. Effects of Solvent and Temperature on Pressurized Liquid Extraction of Anthocyanins and Total Phenolics from Dried Red Grape Skin, Journal of Agricultural and Food Chemistry. 51(18): 5207-5213.

Kohler, I., K. Jenett-Siems, K. Siems, M. A. Hernandez, R. A. Ibarra, W. G. Berendsohn, et al. 2002. In Vitro Antiplasmodial Investigation of Medicinal Plants from El Savador, Z. Naturforsch. 57c: 277-278.

Egan, T. J. 2003. Haemozoin (malaria pigment): A Unique Crystalline Drug Target. TARGETS. 2(3): 115-124.

Sullivan, D. J. 2002. Theories on Malarial Pigment Formation And Quinoline Action. International Journal for Parasitology. 32(13): 1645-1653.

Kumar, S., M. Guha, V. Choubey, P. Maity, and U. Bandyopadhyay. 2007. Antimalarial Drugs Inhibiting Hemozoin (B-Hematin) Formation: A Mechanistic Update. Life Sciences. 80(9): 813-828.

Rathore, D., D. Jani, R. Nagarkatti, and S. Kumar. 2006. Heme Detoxification and Antimalarial Drugs - Known Mechanisms and Future Prospects. Drug Discovery Today: Therapeutic Strategies. 3(2): 153-158.

Egan, T. J., J. Y.-J. Chen, K. A. de Villiers, T. E. Mabotha, K. J. Naidoo, K. K. Ncokazi, et al. 2006. Haemozoin (beta-haematin) Biomineralization Occurs by Self-assembly Near the Lipid/Water Interface. FEBS Letters. 580: 5105-5110.

Kumar, S. and U. Bandyopadhyay. 2005. Free Heme Toxicity and Its Detoxification Systems in Human. Toxicology Letters. 157(3): 175-188.

Olliaro, P. L. and Y. Yuthavong. 1999. An Overview of Chemotherapeutic Targets for Antimalarial Drug Discovery, Pharmacology & Therapeutics. 81(2): 91-110.

Downloads

Published

2017-08-28

Issue

Section

Science and Engineering

How to Cite

EVALUATION OF RENNELLIA ELLIPTICA AS POTENTIAL ANTIPLASMODIAL HERBAL REMEDY. (2017). Jurnal Teknologi (Sciences & Engineering), 79(6). https://doi.org/10.11113/jt.v79.9912