EFFECT OF HRT AND INFLUENT SUBSTRATE CONCENTRATION ON NUTRIENT REMOVAL AND MICROBIAL COMMUNITY DYNAMICS IN AN ANOXIC/ANAEROBIC-AEROBIC MBR

Authors

  • Zubair Ahmed Department of Civil Engineering, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
  • Kyu-Hong Ahn Center for Environmental Technology Research, Energy and Environment Research Division, Korea Institute of Science and Technology, Seoul, Korea

DOI:

https://doi.org/10.11113/mjce.v23.15816

Keywords:

Surface hardness, Membrane bioreactor, Hydraulic retention time, Substrate concentration, Microbial community dynamics, Nitrogen removal, Quinine profile

Abstract

In this study, effects of hydraulic retention time (HRT) and influent COD concentration on biological nutrient removal and changes in microbial community structure in an Membrane bioreactor (MBR) based system were investigated. Three different levels of CODinf and three HRTs (4, 5 & 8 hrs) were applied. Total nitrogen and total phosphorus removal efficiencies were 74% and 89%, respectively when high CODin was supplied to the MBRs. The comparison of microbial community structure between the sludges from the MBR performing poor biological phosphorus removal and from the MBR demonstrating enhanced phosphorus removal pointed out that microorganisms containing ubiquinone UQ-9, and menaquinone MK-7, -8(H2), -9(H4) and -10 (H4) were responsible for improvement in treatment efficiencies. The analysis of microbial community structure indicated that subclass ï§- Proteobacteria, species of the genera Rhodoccocus, members of the genus Gordonia and Microlunatus phosphovorus can be considered potential phosphate accumulating organisms in the MBR.

References

Ahmed, Z., Cho, J., Lim, B. R., Song, K. G. and Ahn, K. H. (2007). Effects of sludge retention time on membrane fouling and microbial community structure in a membrane bioreactor.

Journal of Membrane Science 287(2): 211-218.

Ahn, K.-H., Song, K.-G., Choa, E., Cho, J., Yun, H., Lee, S. and Me, J. (2003). Enhanced biological phosphorus and nitrogen removal using a sequencing anoxic/anaerobic membrane

bioreactor (SAM) process. Desalination 157(1-3): 345-352.

APHA (1992). Standard Methods for the Examination of Water and Wastewater. 15 Fifteenth Street, NW, Washington, DC 20005, American Public Health Association.

Briglia, M., Rainey, F. A., Stackebrandt, E., Schraa, G. and Salkinoja-Salonen, M. S. (1996). Rhodococcus percolatus sp. nov., a bacterium degrading 2,4,6- trichlorophenol. International

Cho, J., Song, K.-G., Hyup Lee, S. and Ahn, K.-H. (2005). Sequencing anoxic/anaerobic membrane bioreactor (SAM) pilot plant for advanced wastewater treatment. Desalination

(1-3):219-225.

Choi, E., Rhu, D., Yun, Z. and Lee, E. (1998). Temperature effects on biological nutrient removal system with weak municipal wastewater. Water Science and Technology 37(9): 219-

Hedrick, D. B. and White, D. C. (1986). Microbial respiratory quinones in the environment: I. A sensitive liquid chromatographic method. Journal of Microbiological Methods 5(5-6):243-254.

Hiraishi, A. (1999). Isoprenoid quinones as biomarkers of microbial populations in the environment. Journal of Bioscience and Bioengineering 88(5):449-460.

Hiraishi, A., Ueda, Y. and Ishihara, J. (1998). Quinone Profiling of Bacterial Communities in Natural and Synthetic Sewage Activated Sludge for Enhanced Phosphate Removal. Appl.

Environ. Microbiol. 64(3):992-998.

Hu, H.-Y., Fujie, K., Nakagome, H., Urano, K. and Katayama, A. (1999). Quantitative analysesof the change in microbial diversity in a bioreactor for wastewater treatment based on

respiratory quinones. Water Research 33(15):3263-3270.

Kim, D., Kim, K.-Y., Ryu, H.-D., Min, K.-K. and Lee, S.-I. (2009). Long term operation of pilotscale

biological nutrient removal process in treating municipal wastewater. Bioresource

Technology 100(13):3180-3184.

Kim, K. K., Lee, C. S., Kroppenstedt, R. M., Stackebrandt, E. and Lee, S. T. (2003). Gordonia sihwensis sp. nov., a novel nitrate-reducing bacterium isolated from a wastewater-treatment

bioreactor. International Journal of Systematic and Evolutionary Microbiology 53(5): 1427- 1433.

Kurisu, F., Satoh, H., Mino, T. and Matsuo, T. (2002). Microbial community analysis of thermophilic contact oxidation process by using ribosomal RNA approaches and the quinone

profile method. Water Research 36(2): 429-438.

Lim, B.-R., Ahn, K.-H., Songprasert, P., Lee, S.-H. and Kim, M.-J. (2004). Microbial community structure in an intermittently aerated submerged membrane bioreactor treating domestic

wastewater. Desalination 161(2):145-153.

Lin, C.-K., Katayama, Y., Hosomi, M., Murakami, A. and Okada, M. (2000). The relationship between isoprenoid quinone and phosphorus removal activity. Water Research 34(14): 3607-

Liu, W. T., Hanada, S., Marsh, T. L., Kamagata, Y. and Nakamura, K. (2002). Kineosphaera limosa gen. nov., sp. nov., a novel Gram-positive polyhydroxyalkanoate-accumulating coccus

isolated from activated sludge. International Journal of systematic and Evolutionary Microbiology 52(5):1845-1849.

Nakamura, K., Hiraishi, A., Yoshimi, Y., Kawaharasaki, M., Masuda, K. and Kamagata, Y. (1995). Microlunatus phosphovorus gen. nov., sp. nov., a New Gram-Positive PolyphosphateAccumulating Bacterium Isolated from Activated Sludge. International Journal of Systematic

Bacteriology 45(1): 17-22.ournal of Systematic Bacteriology 46(1): 23-30.

Onda, S., Hiraishi, A., Matsuo, Y. and Takii, S. (2002). Polyphasic approaches to the identification of predominant polyphosphate-accumulating organisms in a laboratory-scale

anaerobic/aerobic activated sludge system. Journal of General and Applied Microbiology 48 (1): 43-54

Randall, C. W., Stansel, H. D. and Barnard, J. L. (1992). Design and retrofit of wastewater treatment plants for biological nutrient removal., Technomic Publishing Co. Inc.

Sang-eun, L., Kwang Soo, K., Jae Hwan, A. and Chang Whoe, K. (1997). Comparison of phosphorus removal characteristics between various biological nutrient removal processes.

Water Science and Technology 36(12):61-68.

Temmink, H., Petersen, B., Isaacs, S. and Henze, M. (1996). Recovery of biological phosphorus removal after periods of low organic loading. Water Science and Technology 34(1-2): 1-8.

Wentzel, M. C., Ekama, G. A. and Marais, G. v. R. (1991). Kinetics of nitrification denitrification biological excess phosphorus removal systems - a review. Water Science and

Techology 23: 555-565.

Yoshimi, Y., Hiraishi, A. and Nakamura, K. (1996). Isolation and Characterization of Microsphaera multipartita gen. nov., sp. nov., a Polysaccharide-Accumulating Gram-Positive

Bacterium from Activated Sludge. International Journal of Systematic Bacteriology 46(2): 519-525.

Zhang, H., Wang, X., Xiao, J., Yang, F. and Zhang, J. (2009). Enhanced biological nutrient removal using MUCT-MBR system. Bioresource Technology 100(3): 1048-1054.

Downloads

Published

2018-06-07

Issue

Section

Articles

How to Cite

EFFECT OF HRT AND INFLUENT SUBSTRATE CONCENTRATION ON NUTRIENT REMOVAL AND MICROBIAL COMMUNITY DYNAMICS IN AN ANOXIC/ANAEROBIC-AEROBIC MBR. (2018). Malaysian Journal of Civil Engineering, 23(2). https://doi.org/10.11113/mjce.v23.15816