EFFECT OF SODIUM CHLORIDE ON THE WETTING INDUCED COLLAPSE STRAIN OF SOILS

Authors

  • Ouassila Bahloul Department of Civil Engineering, University of Batna, Algeria
  • Khelifa Abbeche Department of Civil Engineering, University of Batna, Algeria
  • Azeddine Bahloul CGI Technical Services, 1612 Wedding Way Redding, California, 96003 USA
  • Amor Halitim Department of Pedology of University of Batna, Algeria

DOI:

https://doi.org/10.11113/mjce.v26.15881

Keywords:

Collapsible soils, wetting, experimental investigation, chemical treatment

Abstract

Collapsible soils are unsaturated soils which present the potential for large strains and complete change to the whole particle structure after wetting with or without loading. These soils are characterized with loose structures composed of silt to fine-sand-size particles. Collapsible soils are deposited in arid and semi-arid regions. Due to the expansion of human activities, these regions are occupied aggressively leading to the use of large quantities of water which create favorable conditions for soil collapse. The soils failure leads to severe damages and large distresses to man-made structures. The experimental study on reconstituted soil in laboratory consists of the evaluation of the effect of a saline solution of sodium chloride at different, water content and levels of compaction energy on the collapsible potential. The method used is based on oedometer tests with variation of the vertical stress. The study clearly reveals the influence of the salt concentration on the change of microstructural characteristics of the reconstituted soil and reduction of the collapse potential .

References

Abbeche, K. (2005). Etude de l'Influence de la Densité Relative et l'Indice de Cconsistance sur le Taux et l'Amplitude de l'Affaissement des Sols. Ph.D. Thesis, University of Batna, Algeria 180.

Abbeche, K., Bahloul, O., Ayadat, T., and Bahloul, A. (2010). Treatment of Collapsible Soils by Salts Using the Double Consolidation Method. Experimental and Applied Modeling of

Unsaturated Soils, Proceedings of Geoshanghai, June 3-5, Shanghai, Chine.doi:10 1061/41103(396)10.

Abbeche, K., Hammoud, F., and Ayadat, T. (2007). Influence of Relative Density and Clay Fraction on Soils Collapse. Experimental Unsaturated Soil Mechanics, Springer Proceedings

in Physics, 112: 3-9.doi:10 1007/3 540 6 9873-6-1.

Abbeche, K., Laouar, M., and Messaoud, F. (2010). Prediction of Collapsible Soils by Cone Penetrometer and Ultrasonic Tests. In Studia Geotechnica et Mechanica, vol. XXXII 2:.3-21.

Abbeche, K., Mokrani, L., and Boumekik, A. (2005). Contribution à l’Identification des Sols

Effondrables. Revue Française de Géotechnique 110:85-90.

Ayadat, T., Hanna, A. (2007). Identification of Collapsible Soils Using the Fall Cone Apparatus.Geotechnical Testing Journal, vol. 30 No. 4.

Cui, Y. J., Delage, P., Schlosser, F., and Wonarowcz, M. (1999). Etude du Comportement Volumique d’un Loess du Nord de la France. XIIème Congrés Européen de Mécanique des Sols et de Géotechnique Amesterdam, vol 1:337-342.

Dudley, J.H. (1970). Review of Collapsing Soils. Journal Soil Mech and Found. Div, ASCE 96:925-947.

Grabowska, O. B. (1975). SEM Analysis of Microstructures of Loess Deposits. Bulletin of the International Association of Engineering Geology, No .11: 45-48 Krefeld.

Halitim, A. (1985). Contribution à l’Etude des Sols Arides (Hautes Plaines Steppiques d’Algérie). Morphologie, Distribution et Rôle des Sels dans la Genèse et le Comportement des Sols.

Thesis, University Rennes : 383.

Halitim, A., Robert, M., Tessier, D., and Prost, R. (1984). Influence de Cations Echangeables (Na+, Ca2+ Mg2+) et de la Concentration Saline sur le Comportement Physique (Rétention

en Eau et la Conductivité Hydraulique) de la Montmorillonite. Agronomie, 4 :451-459.

Jennings, JE., and Knight, K. (1975). The Additional Settlement of Foundation Due to Collapse of Sandy Soils on Wetting. Proceedings. 4th Inter. Conf. on Soil Mechanics and Foundation Engineering, 1: 316-319.

Kaufhold, S., and Dohrman, R. (2009). Stability of Bentonites in Salt Solutions/Sodium Chloride. Applied Clay Science, paper No

.01627.

Lawton, EC., Fragaszi, R J., and James, H. (1989). Collapse of Compacted Clayey Sand. Journal of Geotech. Eng.Div, ASCE,vol 155,9: 1252-1267.

Le Runigo, B., Ferber, V., Cuisinier, O., Deneele, D., and Cui, Y. J. (2008). Effets d’une Circulation d’Eau sur le Comportement Physico-Chimique d’un Limon Traité à la Chaux. JNGG’08 Nantes 18-20 Juin 2008.

Lutenegger, AJ., and Saber, RT. (1988). Determination of Collapse Potential of Soils. Geotechnical Testing J, vol 11, 3:173-178.

Rollins, K., Wayne, M., and Rogers, G. (1994). Mitigation Measures For Small Structures On Collapsible Alluvial Soils. Journal of Geotechnical Engineering, vol 120, 9 Paper No

Shao, Chi C., Chang, Yu Ou., and Ming Kuang, W. (2009). Injection of Saline Solution to Improve the Electro Osmotic Pressure and Consolidation of Foundation Soil. Applied clay

science, vol 44:218-224.

Tessier, D. (1984). Etude Expérimentale de l’Organisation des Matériaux Argileux. Hydratation, Gonflement et Saturation au Cours de Dessiccation et de la Réhumectation. Thesis, Université

de Paris VII : 361.

Tessier, D., and Berrier, J. (1979). Utilisation de la Microstructure Electronique à Balayage dans l’Etude des Sols. Observations des Sols Humides Soumis à Différents pF. Science du sol 1 : 67-82.

Downloads

Published

2018-07-02

Issue

Section

Articles

How to Cite

EFFECT OF SODIUM CHLORIDE ON THE WETTING INDUCED COLLAPSE STRAIN OF SOILS. (2018). Malaysian Journal of Civil Engineering, 26(2). https://doi.org/10.11113/mjce.v26.15881