THE EFFECT OF STACKING SEQUENCE ON TENSILE PROPERTIES OF HYBRID COMPOSITE MATERIALS
DOI:
https://doi.org/10.11113/mjce.v28.15991Keywords:
Hybrid materials, E-glass fibers, carbon fibers, epoxy resin, tensile test.Abstract
Hybrid composite materials have found extensive applications in many areas such as in the medical field, aerospace, automobile and in the sport industry, between others. The effect of stacking sequence of glass/carbon fibers on the tensile behavior of the hybrid composites was investigated in this paper. Five groups of hybrid composite laminates were produced using various proportions of woven E-glass/carbon fibers reinforced epoxy matrix and subjected to tensile tests. The results showed that the hybrid laminations that consist of three layers of carbon and two layers of glass provided the best tensile properties. Group D showed the maximum force results (9255.7 N) and maximum tensile stress (382.7 Mpa). For three or less number of layers in the composites, when using carbon fiber layers more than glass fiber layers, the tensile strength was found similar. Otherwise, the tensile load increased with increasing number of layers. Moreover, for the tensile force and the stress of the hybrid composite samples that consisted of three or more layers, a significant effect of the stacking sequence was noticed.References
ASTM (2012). ASTM D 638: Standard Test Method for Tensile Properties of Plastics. Annual
Book of ASTM Standards, Section 8, volumes 08.01.
Aucher J., Vieille B. & Taleb L. (2009). Etude comparative de l’influence de la temperature sur
le comportement de stratifiés tissés carbone à matrice thermodurcissable ou à matrice
thermoplastique, 19ème Congrès Français de Mécanique, Marseille, France; 24–28 août.
Banerjee S. & Sankar B.V. (2014). Mechanical properties of hybrid composites using finite
element method based micromechanics. Composites: Part B58, 318–327.
Cao S., Wu Z. & Wang X. (2009). Tensile properties of CFRP and hybrid FRP composites at
elevated temperatures. J Compos Mater; 43(4): 315–30.
Cheong S.K. & Lee S.H. (1997). Evaluation of tensile properties of carbon fiber reinforced
composite laminates with non-woven carbon mat. J Kor Soc Mach Tool Eng; 6: 96–100.
Chiang M.Y.M., Wang X., Schultheisz C.R. & He J. (2005). Prediction and three-dimensional
Monte-Carlo simulation for tensile properties of unidirectional hybrid composites. Compos
Sci Technol; 65:1719–27.
Fiedler B., Hojo M., Ochiai S., Schulte K. & Ando M. (2001). Failure behavior of an epoxy
matrix under different kinds of static loading. Compos Sci Technol; 61:1615–24.
Fotsing E.R., Miron F., Eury Y., Ross A. & Ruiz E. (2012). Bonding analysis of carbon/epoxy
composites with viscoelastic acrylic adhesive. Composites: Part B; 43:2087–93.
Fu S.Y., Lauke B., Mäder E., Yue C.Y. & Hu X. (2000). Tensile properties of short-glassfiberand
short-carbon-fiber-reinforced polypropylene composites. Compos Part A: Appl Sci
Manuf; 31:1117–25.
Fu S.Y., Lauke B., Mäder E., Yue C.Y., Xiao H. & Mai Y.W. (2001). Hybrid effects on tensile
properties of hybrid short-glassfiber- and short-carbon-fiber-reinforced polypropylene
composites. J Mater Sci; 36(5): 1243–51.
Guermazi N., Haddar N., Elleuch K. & Ayedi H.F. (2014). Investigations on the fabrication and
the characterization of glass/epoxy, carbon/epoxy and hybrid composites used in the
reinforcement and the repair of aeronautic structures.Tunisia, Materials and
Design 56,714–24.
Hatta H., Goto K. & Aoki T. (2005). Strengths of C/C composites under tensile, shear, and
compressive loading: role of interfacial shear strength. Compos Sci Technol; 65:2550–62.
Miwa M. & Horiba N. (1994). Effects of fibre length on tensile strength of carbon/glass fibre
hybrid composites. J Mater Sci; 29:973–7.
Moutier J., Fois M. & Picard C. (2009). Characterization of carbon/epoxy materials for structural
repair of carbon/BMI structures. Composites: Part B; 40:1–6.
Mutsuyoshil H. & Aravinthan T. (2010). Development of New Hybrid Composite Girders
Consisting of Carbon and Glass Fibers", Saitama University, & Toray Industries, Inc., Japan.
Pandya K.S., Veerraju C. & Naik N.K. (2011). Hybrid composites made of carbon and glass
woven fabrics under quasi-static loading. Mater Des; 32: 4094–9.
Rong M.Z, Zhang M.Q, Liu Y., Yang G.C. & Zeng H.M. (2001). The effect of fiber treatment on
the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci
Technol; 61:1437–47.
Seung H.L, Hiroshi N. & Seong K.C. (2002). Tensile properties and fatigue characteristics of
hybrid composites with non-woven carbon tissue. International Journal of Fatigue 24 397–
Srivastava P., Ahire P., Chavan M.S., Sharma G. & Narsingh P. (2011). New hybrid Composite
Cable for Power transmission, Critical Signaling, & Telecom application . Sterlite Optical
Technologies Ltd. Silvassa. UT of Dadara & Nagar Haveli, INDIA.
Swanson S.R. (1997). Introduction to design and analysis with advanced composite materials.
Englewood Cliffs, NJ: Prentice Hall.
Velmurugan, R. & Manikandan, V. (2007). Mechanical properties of polymer/glass fiber hybrid
composites", Composites Part A: Applied Science and Manufacturing Vol.38, (10), 2216-
Yasmin A. & Danie I.M. (2004). Mechanical and thermal properties of graphite platelet/ epoxy
composites. Polymer; 45: 8211–9.
Ying S. & Kin L. (2002). Environmental fatigue behavior and life prediction of unidirectional
glass-carbon/epoxy hybrid composites. Int J Fatigue; 24: 847–59