STATIC AND DYNAMIC BEHAVIOUR OF KUALA LUMPUR LIMESTONE
DOI:
https://doi.org/10.11113/mjce.v28.15992Keywords:
Dynamic, earthquake, limestone, seismic, surficial structuresAbstract
It is a well known fact that the local bedrock which acts as the foundation for many surficial structures plays a major role in establishing the damage potential of incoming seismic waves due to earthquakes. Seismic activities are definitely a geologic hazard for those living in regarded prone areas, but the seismic waves are invaluable for studying the interior of the Earth. To understand the influence of seismicity to rock behaviour we must first explore stress and strain of the subject rock. Malaysia is experiencing small-scale tremors due the local and neighboring seismic activities. Limestone, being the major portion of the underlying bedrock in Kuala Lumpur, will experience dynamic behaviour due to these activities. To foresee the dynamic behaviour, the static behaviour of rocks is being considered. However, the static and dynamic behaviour of rock corresponds to the rock lithology, physical and mechanical properties of the rock. This paper reviews the properties of Kuala Lumpur limestone and foresees the probable dynamic behaviour of the rock.References
Abd Rashid, R., Shamsudin, R., Abdul Hamid, M. A., & Jalar, A. (2014). Low temperature
production of wollastonite from limestone and silica sand through solid-state reaction.
Journal of Asian Ceramic Societies, 2(1), 77–81. doi:10.1016/j.jascer.2014.01.010
Hashemi Azizi, S. H., Mirab Shabestari, G., & Khazaei, A. (2014). Petrography and
geochemistry of Paleocene–Eocene limestones in the Ching-dar syncline, eastern Iran.
Geoscience Frontiers, 5(3), 429–438. doi:10.1016/j.gsf.2013.08.002
Oliveira, L. R., Cunha, H. P., Silva, N. M., & Pádua, I. P. M. (2014). Chemical and
Mineralogical Characterization and Soil Reactivity of Brazilian Waste Limestones.
APCBEE Procedia, 9(Icbee 2013), 8–12. doi:10.1016/j.apcbee.2014.01.002
Smirnov, I., Petrov, Y., Volkov, G., Abramian, A., Verichev, S., Bragov, A., … Lamzin, D.
(2014). Dynamic Strength of Limestone in Terms of the Incubation Fracture Time
Criterion. Procedia Materials Science, 3, 778–783. doi:10.1016/j.mspro.2014.06.127
Tsivilis, S., Chaniotakisb, E., Badogiannis, E., Pahoulasa, G., & Ilias, A. (1999). A study on the
parameters affecting the properties limestone cements of Portland. Cement and Concrete
Composites, 21(2), 107–116.
Voglis, N., Kakali, G., Chaniotakis, E., & Tsivilis, S. (2005). Portland-limestone cements. Their
properties and hydration compared to those of other composite cements. Cement and
Concrete Composites, 27(2), 191–196. doi:10.1016/j.cemconcomp.2004.02.006
Xiaojun, F., Enyuan, W., Rongxi, S., Mingyao, W., Yu, C., & Xinqi, C. (2011). The dynamic
impact of rock burst induced by the fracture of the thick and hard key stratum. Procedia
Engineering, 26, 457–465. doi:10.1016/j.proeng.2011.11.2192
Yin, H. Y., Wei, J. C., Guo, J. B., Li, Z. J., Zhu, Z. W., Guan, Y. Z., … Hu, D. X. (2011).
Dynamic monitoring research on displacement of rock mass in coal seam floor on the 1604
workface in NanTun coalmine, Shandong Province, China. Procedia Engineering, 26,
–882. doi:10.1016/j.proeng.2011.11.2250
Yusoff, Z. M., Omar, H., & Kiker.S. (2008). Compositional control on the slake durability of
limestone under different pH. GLobal Journal of Engg. & Tech., 1, 379–387.
Zabidi, H., & De Freitas, M. H. (2011). Re-evaluation of rock core logging for the prediction of
preferred orientations of karst in the Kuala Lumpur Limestone Formation. Engineering
Geology, 117(3-4), 159–169. doi:10.1016/j.enggeo.2010.10.006
Zhang, Q., Ma., J., Song, Q., & Li, S. (2011). Experimental study of dynamic mechanical
properties of rock under static and dynamic combination load. Procedia Engineering, 15,
–3183. doi:10.1016/j.proeng.2011