EFFECT OF PH2S INFLUENCE ON AUSTENITIC STAINLESS STEEL 316L CORROSION BEHAVIOURS IN CHLORIDE ENVIRONMENT / KESAN PENGARUH TEKANAN SEPARA GAS H2S TERHADAP TINGKAH LAKU KAKISAN KELULI TAHAN KARAT 316L DI PERSEKITARAN KLORIDA

Authors

  • Mazlan Shah DNV Malaysia Sdn. Bhd., Level 18, Menara Prestige, No 1, Jalan Penang, 50450 Kuala Lumpur, Malaysia.
  • Nor Rahafza Abdul Manap Department of Applied Physics, Faculty Science and Technology, The National University of Malaysia, 43600 Bangi, Selangor, Malaysia.
  • Muhammad Taqiyuddin Mawardi Ayob DNV Malaysia Sdn. Bhd., Level 18, Menara Prestige, No 1, Jalan Penang, 50450 Kuala Lumpur, Malaysia.
  • Najmiddin Yaakob Center of Industrial Process Reliability and Sustainability (INPRES), Faculty of Chemical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia.
  • Zaidi Embong Faculty of Applied Science and Technology, Tun Hussein Onn University of Malaysia (UTHM), KM 1. Jalan Panchor, 84600 Muar, Johor, Malaysia.
  • Norinsan Kamil Othman Department of Applied Physics, Faculty Science and Technology, The National University of Malaysia, 43600 Bangi, Selangor, Malaysia.

DOI:

https://doi.org/10.11113/mjce.v33.16697

Keywords:

Partial pressure of H2S, austenitic stainless steel 316L, pitting corrosion, passive film

Abstract

H2S corrosion of equipment and pipeline system failures in oil and gas industry is a major concern of researchers as it involves high maintenance costs. Therefore, this study discusses the effect of H2S partial pressure at 0, 3 and 15 bar towards the corrosion behaviour of 316L austenitic stainless steel in chloride environments. The 316L steel exposed to 0 bar pH2S was slightly corroded due to the presence of Cr element which has increased the corrosion resistance of the 316L steel. However, pit penetration rate of 316L steel was increased by 90.1% from 0.07 mm/year at 0 bar pH2S to 0.74 mm/year at 3 bar pH2S and decreased by 83.2% at 15 bar pH2S due to the saturated sulfide content in the test solution. Therefore, 316L steel at 3 bar shows highest corrosion effect due to the dissolution of Cr element at 316L steels surface, thus enhanced passive film breakdown.

References

Aghuy A.A., Zakeri M., Moayed M.H. dan Mazinani M. 2015. Effect of grain size on pitting corrosion of 304L austenitic stainless steel. Corrosion Science. 94: 368-376.

ASTM G1-03. (2017). Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. ASTM International. West Conshohocken, PA. www.astm.org.

Cui, Y., Qin Y., Dilimulati, D. dan Wang, Y. 2019. The Effect of Chlorine Ion on Metal Corrosion Behavior under the Scratch Defect of Coating. International Journal of Corrosion. 2019: 1-11.

Davoodi, A., Pakshir, M., Babaiee, M., dan Ebrahimi, G.R. 2011. A comparative H2S corrosion study of 304L and 316L stainless steels in acidic media. Corrosion Science. 53: 399-408.

Gao, S., Brown, B., Young, D. dan Singer, M. 2018. Formation of iron oxide and iron sulfide at high temperature and their effects on corrosion. Corrosion Science. 135: 167-176

Handoko, W., Pahlevani, F. dan Sahajwalla, V. 2019. Effect of austenitisation temperature on corrosion resistance properties of dual-phase high-carbon steel. Journal of Materials Science. 54: 13775-13786.

Hashim, M., Farhad, F., Smyth‐Boyle, D., Akid, R., Zhang, X. dan Withers, P. J. 2019. Behavior of 316L stainless steel containing corrosion pits under cyclic loading. Materials and Corrosion. 70(11): 2009-2019.

Iannuzzi, M., Barnoush, A. dan Johnsen, R. 2017. Materials and corrosion trends in offshore and subsea oil and gas production. Materials Degradation. 1(2): 1-11.

Kim, C., Zhou, Q., Deng, B., Thornton, E. C. dan Xu, H. 2019. Chromium (VI) Reduction by Hydrogen Sulfide in Aqueous Media: Stoichiometry and Kinetics. Environmental Science & Technology. 35(11): 2219-2225.

Krawczyk, B.D. 2018. Elucidating the corrosion performance of type 316L stainless steel product storage cans. Thesis of PhD. School of Materials. Faculty of Science and Engineering. The University of Manchester.

Lee, J. S., Kitagawa, Y., Nakanishi, T., Hasegawa, Y. dan Fushimi, K. 2016. Passivation Behavior of Type-316L Stainless Steel in the Presence of Hydrogen Sulfide Ions Generated from a Local Anion Generating System. Electrochimica Acta. 220: 304-311.

Melchers, R. E. 2019. Predicting long-term corrosion of metal alloys in physical infrastructure. Materials Degradation. 3(4): 1-7.

Melchers, R. E. 2018. A Review of Trends for Corrosion Loss and Pit Depth in Longer-Term Exposures. Corrosion and Materials Degradation. 1: 42-58.

National Association of Corrosion Engineers (NACE). 2015. Petroleum and natural gas industries - Materials for use in H2S-containing environments in oil and gas production. NACE Standard. ISBN: MR0175/ISO 15156.

Nazarov, A., Vivier, V., Vucko, F. dan Thierry, D. 2019. Effect of Tensile Stress on the Passivity Breakdown and Repassivation of AISI 304 Stainless Steel: A Scanning Kelvin Probe and Scanning Electrochemical Microscopy Study. Journal of The Electrochemical Society. 166(11): 3207-3219.

Nurul, A. S., Azman, J., Muhamad, I. S. dan Norinsan, K. O. 2014. Effect of high temperature corrosion on austenitic stainless steel grade 304 in CO2 gas at 700°C. Sains Malaysiana. 43(7): 1069-1075.

Othman, N. K., Zhang, J. dan Young, D. J. 2010. Temperature and water vapour effects on the cyclic oxidation behaviour of Fe-Cr alloys. Corrosion Science. 52(9): 2827–2836.

Pourbaix, M. 1966. Atlas of Electrochemical Equilibria in Aqueous Solutions. Pergamon Press. New York. 1-226.

Rahman, T., Ebert, W. L. dan Indacochea, E. 2018. Effect of molybdenum additions on the microstructures and corrosion behaviours of 316L stainless steel-based alloys. Corrosion Engineering, Science and Technology. 53: 1-8.

Shah, M., Ayob, M. T. M., Rosdan, R., Yaakob, N., Embong, Z. dan Othman, N. K. 2019. The Effect of H2S Pressure on the Formation of Multiple Corrosion Products on 316L Stainless Steel Surface. The Scientific World Journal. 2020: 1-11.

Smythe, D., Wood, B. dan Kiseeva, E. 2017. The S content of silicate melts at sulfide saturation: New experiments and a model incorporating the effects of sulfide composition. American Mineralogist. 102(4): 795-803.

Wang, J. B., Xiao, G. C., Zhao, W., Zhang, B. R. dan Rao, W. F. 2019. Microstructure and Corrosion Resistance to H2S in the Welded Joints of X80 Pipeline Steel. Metals. 9: 1325-1335.

Wang, S., Yin, X., Zhang, H., Liu, D. dan Du, N. 2019. Coupling Effects of pH and Dissolved Oxygen on the Corrosion Behavior and Mechanism of X80 Steel in Acidic Soil Simulated Solution. Materials (Basel). 12(19): 3175-3186.

Wang, Z., Di-Franco, F., Seyeux, A., Zanna, S., Maurice, V. dan Marcus. 2019. Passivation-induced physicochemical alterations of the native surface oxide film on 316L austenitic stainless steel. Journal of the Electrochemical Society. 166(11): 3376-3388.

Wang, Z., Paschalidou, E. M., Seyeux, A., Zanna, S., Maurice, V. dan Marcus, P. 2019. Mechanisms of Cr and Mo Enrichments in the Passive Oxide Film on 316L Austenitic Stainless Steel. Frontiers in Materials. 6(232): 1-12.

Wang, Z., Zhou, Z. Q., Zhang, L., Hu, J. Y., Zhang, Z. R. dan Lu, M. X. 2019. Effect of pH on the Electrochemical Behaviour and Passive Film Composition of 316L Stainless Steel. Acta Metallurgica Sinica. 32: 585-598.

Zhang, L., Tang, X., Wang, Z., Li, T., Zhang, Z. dan Lu, M. 2017. The Corrosion Behavior of 316L Stainless Steel in H2S environment at high temperatures. International Journal of Electrochemical Science. 12: 8806-8819.

Downloads

Published

2021-07-29

How to Cite

Shah, M. ., Abdul Manap, N. R. ., Mawardi Ayob, M. T. ., Yaakob, N. ., Embong, Z. ., & Kamil Othman, N. (2021). EFFECT OF PH2S INFLUENCE ON AUSTENITIC STAINLESS STEEL 316L CORROSION BEHAVIOURS IN CHLORIDE ENVIRONMENT / KESAN PENGARUH TEKANAN SEPARA GAS H2S TERHADAP TINGKAH LAKU KAKISAN KELULI TAHAN KARAT 316L DI PERSEKITARAN KLORIDA. Malaysian Journal of Civil Engineering, 33(2). https://doi.org/10.11113/mjce.v33.16697

Issue

Section

Articles