DETERMINATION OF A POTENTIAL FOR THE INSTALLATION OF SMALL-SCALE WIND TURBINE IN BARANGAY BAGASBAS, DAET CAMARINES NORTE, PHILIPPINES
DOI:
https://doi.org/10.11113/aej.v12.16503Keywords:
Bagasbas daet, Wind assessment, Wind energy, weibullAbstract
The wind characteristics in Barangay Bagasbas Daet, Camarines Norte, by way of 5-year win data at a 10-m elevation was analyzed using the data gathered from PAGASA or the Philippine Atmospheric Geophysical and Astronomical Services Administration. The area has an overall mean wind speed of 3.36 m/s at 75 degrees North of East. By way of Weibull model to fit the wind data distribution recording an annual wind density of 52.94 W/m2. Power curves used for the estimate of the annual generated energy are 3 KW(V), 5 KW(V), 10 KW(V), 10 KW(H) and 20 KW(H) for small-scale turbine. A value of about 17,095.23 kWh/year was expected for the annual production of energy for 20 KW(H) wind turbine. However, the 5 kW(V) wind turbine shows the highest capacity factor of 13.97%.
References
Weekes, S., and Tomlin, A.S. 2014. Low-cost wind resource assessment for small-scale turbine installations using site pre-screening and short-term wind measurements. IET Renewable Power Generation. 8(4): 349–358.DOI: https://doi.org/10.1049/iet-rpg.2013.0152
Tummala, A., Velamati, R.K., Sinha, D.K., Indraja, V., and Krishna, V.H. 2016. A review on small scale wind turbines. Renewable and Sustainable Energy Reviews. 56: 1351–1371. DOI: https://doi.org/10.1016/j.rser.2015.12.027
Bilir, L., İmir, M., Devrim, Y., and Albostan, A. 2015. An investigation on wind energy potential and small scale wind turbine performance at İncek region – Ankara, Turkey. Energy Conversion and Management. 103: 910–923.
Chandel, S.S., Ramasamy, P., and Murthy, K.S. 2014. Wind power potential assessment of 12 locations in western Himalayan region of India. Renewable and Sustainable Energy Reviews. 39: 530–545. DOI: https://doi.org/10.1016/j.rser.2014.07.050
Cabello, M., and Orza, J.A. 2010. Wind speed analysis in the province of Alicante, Spain. Potential for small-scale wind turbines. Renewable and Sustainable Energy Reviews. 14(9): 3185–3191. DOI: https://doi.org/10.1016/j.rser.2010.07.002
Khahro, S.F., Tabbassum, K., Soomro, A.M., Dong, L., and Liao, X. 2014. Evaluation of wind power production prospective and Weibull parameter estimation methods for Babaurband , Sindh Pakistan. Energy Conversion and Management. 78: 956-967. DOI: https://doi.org/10.1016/j.enconman.2013.06.062
Elliott, D. et al. 2001. Wind Energy Resource Atlas of the Philippines. DOI: https://doi.org/10.2172/784669
Tagum, N.E., Villaflor, M., Nørgård, J., and Clausen, P.B. 2006. Wind Resource Assessment Report, Philippines Site Acquisition , Installation and Commissioning of Wind Measurement Equipment ASEAN Wind 2005 MIME Philippines.
Garcia, A., Torres, J.L., Prieto, E., and De Francisco, A. 1998. Fitting wind speed distributions: A case study. Solar Energy. 62(2):139–144. DOI : https://doi.org/10.1016/S0038-092X(97)00116-3
Islam, M.R., Saidur, R., and Rahim, N.A. 2011. Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function. Energy. 36(2):985–992. DOI: https://doi.org/10.1016/j.energy.2010.12.011
Kidmo, D.K., Danwe, R., Doka, S.Y., Djongyang, N., Doka, Y.S., and Djongyang, N. 2015. Statistical analysis of wind speed distribution based on six Weibull Methods for wind power evaluation in Garoua ,Cameroon. Revue des Energies Renouveables. 18:105–125.
Chang, T.P. 2011. Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application. Applied Energy. 88(1):272–282. DOI: https://doi.org/10.1016/j.apenergy.2010.06.018
Maatallah, T., El Alimi, S., Dahmouni, A.W., and Ben Nasrallah, S. 2013. Wind power assessment and evaluation of electricity generation in the Gulf of Tunis, Tunisia. Sustainable Cities and Society. 6(1):1–10. DOI: https://doi.org/10.1016/j.scs.2012.06.004
Costa Rocha, P.A., de Sousa, R.C., de Andrade, C.F., and da Silva, M.E.V. 2012. Comparison of seven numerical methods for determining Weibull parameters for wind energy generation in the northeast region of Brazil. Applied Energy. 89(1):395–400. DOI: https://doi.org/10.1016/j.apenergy.2011.08.003
Keyhani, A., Ghasemi-Varnamkhasti, M., Khanali, M., and Abbaszadeh, R. 2009. An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran. Energy. 35(1): 188–201. DOI: https://doi.org/10.1016/j.energy.2009.09.009
Justus, C.G., and Mikhail, A. 1976. Height variation of wind speed and wind distributions statistics. Geophysical Research Letters. 3(5):261–264. DOI: https://doi.org/10.1029/GL003i005p00261
Rehman, S., and Al-abbadi, N.M. 2007. Wind shear coefficients and energy yield for Dhahran, Saudi Arabia. Renew. Energy. 32:738–749. DOI: https://doi.org/10.1016/j.renene.2006.03.014
Gualtieri, G., and Secci, S. 2012. Methods to extrapolate wind resource to the turbine hub height based on power law: A 1-h wind speed vs. Weibull distribution extrapolation comparison. Renewable Energy. 43:183–200. DOI: https://doi.org/10.1016/j.renene.2011.12.022
Devrim, Y., Albostan, A., Bilir, L., and Imir, M. 2015. An investigation on wind energy potential and small scale wind turbine performance at Incek region – Ankara, Turkey,” Energy Conversion and Management. 103: 910–923. DOI: https://doi.org/10.1016/j.enconman.2015.07.017
Celik, A.N. 2003. Energy output estimation for small-scale wind power generators using Weibull-representative wind data. Journal of Wind Engineering and Industrial Aerodynamics. 91(5):693–707. DOI: https://doi.org/10.1016/S0167-6105(02)00471-3
Mohammadi, K., and Mostafaeipour, A. 2013. Using different methods for comprehensive study of wind turbine utilization in Zarrineh, Iran”. Energy Conversion and Management. 65:463-70. DOI: https://doi.org/10.1016/j.enconman.2012.09.004
Bataineh, K.M., and Dalalah, D. 2013. Assessment of wind energy potential for selected areas in Jordan. Renewable Energy. 59:75–81. DOI: https://doi.org/10.1016/j.renene.2013.03.034
Diaf, S., and Notton, G. 2013a. Technical and economic analysis of large-scale wind energy conversion systems in Algeria. Renewable and Sustainable Energy Reviews. 19:37–51. DOI: https://doi.org/10.1016/j.rser.2012.11.026
Shata, A., and Hanitsch, A.R. 2006. Evaluation of wind energy potential and electricity generation on the coast of Mediterranean Sea in Egypt. Renewable Energy. 31(8): 1183–1202. DOI: https://doi.org/10.1016/j.renene.2005.06.015
Inflation Rates 1998-2017 [Online], Available: http://www.bsp.gov.ph/statistics/spei_new/tab34_inf.htm [Accessed December 2017]
Boudia, S.M., Benmansourb, A., Abdellatif, M., and Hellal, T. 2016. Wind Assessment of Algeria. Sustainable Cities and Society. 22:171–183. DOI : https://doi.org/10.1016/j.scs.2016.02.010
Olalo, J. 2021. Artificial Neural Network (ANN) Analysis of Co-pyrolysis of Waste Coconut Husk and Laminated Plastic Packaging. ASEAN Journal of Chemical Engineering. 21(2): 241-248. DOI: https://doi.org/10.22146/ajche.69521
Olalo, J. 2022. Pyrolytic Oil Yield from Waste Plastic in Quezon City, Philippines: Optimization Using Response Surface Methodology. International Journal of Renewable Energy Development. 11(1): 325-332. DOI : https://doi.org/10.14710/ijred.2022.41457
Chan, M., Arriola, E., Cuevas, R., and Reyes, J.G. 2021. Development of an Energy Audit Working Procedure for an Academic University Office Building in the Philippines. ASEAN Engineering Journal. 11(1):23. DOI : https://doi.org/10.11113/aej.v11.16669