MIXTURE DESIGN AND TEST PARAMETER EFFECT ON FRACTURE PERFORMANCE OF ASPHALT: A REVIEW
DOI:
https://doi.org/10.11113/aej.v12.16574Keywords:
Fracture Energy, Asphalt mixture, Asphalt Cracking, Polymer Modifiers, Polymeric Fracture Energy, Asphalt mixture, Aggregate gradation, Polymer ModifiersAbstract
Fracture energy is critical for crack evaluation and asphalt mixture design. Thus, the fracture mechanics of asphalt materials should be further investigated. Fracture energy is significantly correlated with factors related to mixture design and testing parameters, as shown in prior studies. Mixture design factors include aggregate gradation and asphalt modification, and test parameters include testing temperature and loading rate. In this systematic review, related studies on the effect of these parameters on the fracture energy of asphalt mixtures are discussed from the perspective of fracture mechanics. Strong relationships between asphalt mixtures’ testing parameters and fracture energy are found in the literature. Moreover, selecting an appropriate loading rate and testing temperature related to the in-service conditions is crucial in evaluating the fracture energy of asphalt mixtures. Good understanding of these relationships can aid in eliminating the fluctuation in the fracture energy results determined in the laboratory. In turn, asphalt’s resistance against cracking can be characterised further.
References
P. Jaskula, C. Szydlowski, and M. Stienss, 2018 “Influence of bitumen type on cracking resistance of asphalt mixtures used in pavement overlays,” IOP Conference Series: Materials Science and Engineering, 356(1), doi: 10.1088/1757-899X/356/1/012010.
H. R. Radeef et al., 2021, “Characterisation of Cracking Resistance in Modified Hot Mix Asphalt Under Repeated Loading Using Digital Image Analysis,” Theoretical and Applied Fracture Mechanics, 103130, doi: https://doi.org/10.1016/j.tafmec.2021.103130.
F. Moavenzadeh, 1967, “Asphalt Fracture,” in Assoc Asphalt Paving Technol Proc, 36
H. R. Radeef et al., 2021 “Determining Fracture Energy in Asphalt Mixture: A Review,” in {IOP} Conference Series: Earth and Environmental Science, 682(1), 12069. doi: 10.1088/1755-1315/682/1/012069.
S. Son, I. M. Said, and I. L. Al-Qadi, 2019, “Fracture properties of asphalt concrete under various displacement conditions and temperatures,” Construction and Building Materials, doi: 10.1016/j.conbuildmat.2019.06.161.
M. Fakhri, E. Haghighat Kharrazi, M. R. M. Aliha, and F. Berto, 2018, “The effect of loading rate on fracture energy of asphalt mixture at intermediate temperatures and under different loading modes,” Frattura ed Integrita Strutturale, 12(43): 113–132, doi: 10.3221/IGF-ESIS.43.09.
D. V. Ramsamooj, 2002. “Analytical Model for Prediction of Fatigue Life of Asphalt Concrete, Including Size Effect,” International Journal of Pavement Engineering, doi: 10.1080/1029843021000067818.
H. R. Radeef et al., 2021. “Impact of Ageing and Moisture Damage on the Fracture Properties of Plastic Waste Modified Asphalt,” InFInID 2021, 971(1): 12009. doi: 10.13140/RG.2.2.29093.42728.
X. 2002 Ruth, BE, Roque, R, Nukunya, B, Davis, R, Marasteanu, M, Vavrik, W, Fee, F, Taylor, M, Dukatz, E & Li, “Aggregate gradation characterization factors and their relationships to fracture energy and failure strain of asphalt mixtures,” Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions, 71
Z. N. Kalantar, M. R. Karim, and A. Mahrez, 2012. “A review of using waste and virgin polymer in pavement,” Construction and Building Materials. doi: 10.1016/j.conbuildmat.2012.01.009.
M. Horgnies, E. Darque-Ceretti, H. Fezai, and E. Felder, 2011. “Influence of the interfacial composition on the adhesion between aggregates and bitumen: Investigations by EDX, XPS and peel tests,” International Journal of Adhesion and Adhesives, vol. 31: 238–247, doi: 10.1016/j.ijadhadh.2011.01.005.
S. Im, H. Ban, and Y. R. Kim, 2014. “Characterization of nonlinear viscoelastic material properties of asphalt materials in multiple length scales,” doi: 10.1201/b17219-122.
B. Doll, H. Ozer, J. J. Rivera-Perez, I. L. Al-Qadi, and J. Lambros, 2017, “Investigation of viscoelastic fracture fields in asphalt mixtures using digital image correlation,” International Journal of Fracture, doi: 10.1007/s10704-017-0180-8.
X. Li, W. G. Buttlar, A. F. Braham, A. F. Braham, and M. O. Marasteanu, 2015, “Effect of factors affecting fracture energy of asphalt concrete at low temperature,” Road Materials and Pavement Design, 9(March): 397–416, 2008, doi: 10.1080/14680629.2008.9690176.
S. B. Cooper, L. Negulescu, S. S. Balamurugan, L. 2015. Mohammad, and W. H. Daly, “Binder composition and intermediate temperature cracking performance of asphalt mixtures containing recycled asphalt shingles,” doi: 10.1080/14680629.2015.1077013.
X. Li, M. O. Marasteanu, A. Kvasnak, J. Bausano, R. C. 2010. Williams, and B. Worel, “Factors study in low-temperature fracture resistance of asphalt concrete,” Journal of Materials in Civil Engineering, 22(2): 145–152, doi: 10.1061/(ASCE)0899-1561(2010)22:2(145).
R. Rahbar-Rastegar, J. Sias, and E. Dave, 2018, “Evaluation of Viscoelastic and Fracture Properties of Asphalt Mixtures with Long-Term Laboratory Conditioning,” Transportation Research Record Journal of the Transportation Research Board, 2672. doi: 10.1177/0361198118795012.
A. E. Alvarez, L. F. Walubita, and F. Sanchez, 2012. “Using fracture energy to characterize the hot mix asphalt cracking resistance based on the direct- tensile test,” Revista Facultad de Ingenieria, 64: 126–137.
A. A. Butt, D. Jelagin, Y. Tasdemir, and B. Birgisson, 2010, “The effect of wax modification on the performance of mastic asphalt,” International Journal of Pavement Research and Technology, 3: 86–95. doi: 10.6135/ijprt.org.tw/2010.3(2).86.
M. Enieb and A. Diab, 2017, “Characteristics of asphalt binder and mixture containing nanosilica,” International Journal of Pavement Research and Technology, doi: 10.1016/j.ijprt.2016.11.009.
F. Meroni, G. W. Flintsch, B. K. Diefenderfer, and S. D. Diefenderfer, 2020, “Application of Balanced Mix Design Methodology to Optimize Surface Mixes with High-RAP Content,” Materials, 13(24), doi: 10.3390/ma13245638.
H. R. Radeef et al., 2021, “Effect of aging and moisture damage on the cracking resistance of rubberized asphalt mixture,” in Materials Today: Proceedings, 42: 2853–2858. doi: https://doi.org/10.1016/j.matpr.2020.12.734.
K. P. Biligiri, S. Said, and H. Hakim, 2012. “Asphalt mixtures’ crack propagation assessment using semi-circular bending tests,” International Journal of Pavement Research and Technology, 5(4): 209–217
C. Na Chiangmai and C. chiangmai, 2010. “Fatigue-fracture relation on asphalt concrete mixtures,” University of Illinois at Urbana-Champaign, epartment of Civil and Environmental Engineering, M.S.
M. P. Wagoner, W. G. Buttlar, G. H. Paulino, and P. Blankenship, 2005, “Investigation of the fracture resistance of hot-mix asphalt concrete using a disk-shaped compact tension test,” Transportation Research Record, 1929: 183–192. doi: 10.3141/1929-22.
P. Rath, J. E. Love, W. G. Buttlar, and H. Reis, 2019. “Performance analysis of asphalt mixtures modified with ground tire rubber modifiers and recycled materials,” Sustainability (Switzerland), 11(6): 1792, doi: 10.3390/su11061792.
I. Haryanto and O. Takahashi, “Effect of aggregate gradation on workability of hot mix asphalt mixtures,” The Baltic Journal of Road and Bridge Engineering. 2: 21–28, 2007.
M. R. Kakar, M. O. Hamzah, M. N. Akhtar, and D. Woodward, 2016, “Surface free energy and moisture susceptibility evaluation of asphalt binders modified with surfactant-based chemical additive,” Journal of Cleaner Production, 112: 2342–2353. doi: 10.1016/j.jclepro.2015.10.101.
P. K. Das, Y. Tasdemir, and B. Birgisson, 2012. “Evaluation of fracture and moisture damage performance of wax modified asphalt mixtures,” Road Materials and Pavement Design, 13: 142–155. doi: 10.1080/14680629.2011.644120.
K. Sungho, R. Roque, A. Guarin, B. Birgisson, N. Gibson, and F. Fee, 2006. “Identification and assessment of the dominant aggregate size range (DASR) of asphalt mixture,”
V. Venudharan and K. P. Biligiri, 2019. “Investigation of Cracking Performance of Asphalt-Rubber Gap-Graded Mixtures: Statistical Overview on Materials’ Interface,” Journal of Testing and Evaluation, 47: 120–133, doi: 10.1520/jte20180744.
S. Kim, R. Roque, B. Birgisson, and A. Guarin, 2009. “Porosity of the dominant aggregate size range to evaluate coarse aggregate structure of asphalt mixtures,” Journal of Materials in Civil Engineering, doi: 10.1061/(ASCE)0899-1561(2009)21:1(32).
K. Kim and M. Kang, “Linking the effect of aggregate interaction to the compaction theory for asphalt mixtures using image processing,” Applied Sciences (Switzerland), 8(11) 2018, doi: 10.3390/app8112045.
Khalid Al Shamsi1 et al., 2006 “Compactability and Performance of Superpave Mixtures with Aggregate Structures Designed Using the Bailey Method,” Louisiana Transportation Research Center (LTRC) and, 456:453-603
S. Chun, R. Roque, and J. Zou, 2012. “Effect of gradation characteristics on performance of superpave mixtures in the field,” Transportation Research Record, doi: 10.3141/2294-05.
B. Ding, X. Zou, Z. Peng, and X. Liu, 2018, “Evaluation of Fracture Resistance of Asphalt Mixtures Using the Single-Edge Notched Beams,” Advances in Materials Science and Engineering 145: 1–9. doi: 10.1155/2018/8026798.
H. Bahia, A. Hanz, K. Kanitpong, and H. Wen, 2007. “Test Method to Determine Aggregate / Asphalt Adhesion Properities and Potential Moisture Damage,” WHRP, vol. WHRP 07-02, no. May: 145,
N. T. Tran and O. Takahashi, 2017. “Effect of aggregate gradation on the cracking performance of wearing course mixtures,” Construction and Building Materials, 152(November): 520–528, doi: 10.1016/j.conbuildmat.2017.07.009.
M. R. M. M. Aliha, H. Behbahani, H. Fazaeli, and M. H. Rezaifar, 2015. “Experimental study on mode I fracture toughness of different asphalt mixtures,” Scientia Iranica, 22(1): 120–130.
H. Wang, C. Zhang, L. Li, Z. You, and A. Diab, 2016. “Characterization of Low Temperature Crack Resistance of Crumb Rubber Modified Asphalt Mixtures Using Semi-Circular Bending Tests,” Journal of Testing and Evaluation, 44(2): 20150145, doi: 10.1520/jte20150145.
L. Garcia-gil and R. Mir, “applied sciences Evaluating the Role of Aggregate Gradation on Cracking Performance of Asphalt Concrete for Thin Overlays,” Applied Sciences (Switzerland), vol. 9, no. 4, pp. 122–168, 2019, doi: 10.3390/app9040628.
S. Fernandes, L. Costa, H. Silva, and J. Oliveira, “Effect of incorporating different waste materials in bitumen,” Ciência & Tecnologia dos Materiais, vol. 29, no. 1, pp. e204–e209, 2017, doi: https://doi.org/10.1016/j.ctmat.2016.07.003.
E. Ahmadinia, M. Zargar, M. R. Karim, M. Abdelaziz, and E. Ahmadinia, “Performance evaluation of utilization of waste Polyethylene Terephthalate (PET) in stone mastic asphalt,” Construction and Building Materials, 2012, doi: 10.1016/j.conbuildmat.2012.06.015.
E. F. Montanelli and I. srl, “Fiber/Polymeric Compound for High Modulus Polymer Modified Asphalt (PMA),” Procedia - Social and Behavioral Sciences, vol. 104, pp. 39–48, 2013, doi: https://doi.org/10.1016/j.sbspro.2013.11.096.
M. Pszczoła, M. Jaczewski, C. Szydłowski, J. Judycki, and B. Dołzycki, “Evaluation of Low Temperature Properties of Rubberized Asphalt Mixtures,” 2017. doi: 10.1016/j.proeng.2017.02.098.
A. Al-Sabaeei, N. I. Nur, M. Napiah, and M. Sutanto, “A review of using natural rubber in the modification of bitumen and asphalt mixtures used for road construction,” Jurnal Teknologi, 2019, doi: 10.11113/jt.v81.13487.
D. Movilla-quesada, A. C. Raposeiras, L. T. Silva-klein, P. Lastra-González, and D. Castro-fresno, “Use of plastic scrap in asphalt mixtures added by dry method as a partial substitute for bitumen,” Waste Management, vol. 87, pp. 751–760, 2019, doi: 10.1016/j.wasman.2019.03.018.
H. R. Radeef, N. A. Hassan, H. Y. Katman, M. Z. H. Mahmud, A. R. Z. Abidin, and C. R. Ismail, “The mechanical response of dry-process polymer wastes modified asphalt under ageing and moisture damage,” Case Studies in Construction Materials, vol. 16, p. e00913, 2022, doi: https://doi.org/10.1016/j.cscm.2022.e00913.
C. Oliviero Rossi, A. Spadafora, B. Teltayev, G. Izmailova, Y. Amerbayev, and V. Bortolotti, “Polymer modified bitumen: Rheological properties and structural characterization Mixture,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 480, pp. 390–397, 2015, doi: https://doi.org/10.1016/j.colsurfa.2015.02.048.
S. Bressi, N. Fiorentini, J. Huang, and M. Losa, “Crumb rubber modifier in road asphalt pavements: State of the art and statistics,” Coatings, vol. 9, no. 6, 2019, doi: 10.3390/COATINGS9060384.
B. Birgisson, A. Montepara, E. Romeo, and G. Tebaldi, “Characterisation of asphalt mixture cracking behaviour using the three-point bending beam test,” International Journal of Pavement Engineering, 2011, doi: 10.1080/10298436.2011.565766.
M. A. Elseifi, L. N. Mohammad, H. Ying, and S. Cooper, “Modeling and evaluation of the cracking resistance of asphalt mixtures using the semi-circular bending test at intermediate temperatures,” Road Materials and Pavement Design, vol. 13, no. SUPPL. 1, pp. 124–139, 2012, doi: 10.1080/14680629.2012.657035.
Y. Yan, S. Chun, R. Roque, S. Kim, and G. R. Irwin, “Cracking Performance of Asphalt Mixtures with Alternative Polymer Modified Asphalt Binders based on Binder Fracture Energy Density.”
H. R. Radeef et al., “Linear viscoelastic response of semi-circular asphalt sample based on digital image correlation and XFEM,” Measurement, vol. 192, p. 110866, 2022, doi: https://doi.org/10.1016/j.measurement.2022.110866
P. Lastra-González, M. A. Calzada-Pérez, D. Castro-Fresno, Á. Vega-Zamanillo, and I. Indacoechea-Vega, “Comparative analysis of the performance of asphalt concretes modified by dry way with polymeric waste,” Construction and Building Materials, vol. 112, pp. 1133–1140, 2016, doi: https://doi.org/10.1016/j.conbuildmat.2016.02.156.
S. Haider, I. Hafeez, R. Ullah, Jamal, and R. Ullah, 2020, “Sustainable use of waste plastic modifiers to strengthen the adhesion properties of asphalt mixtures,” Construction and Building Materials, vol. 235: 117496, doi: 10.1016/j.conbuildmat.2019.117496.
P. S. Wulandari and D. Tjandra, 2017. “Use of Crumb Rubber as an Additive in Asphalt Concrete Mixture,” Procedia Engineering, 171: 1384–1389, doi: 10.1016/j.proeng.2017.01.451.
D. Lo Presti, “Recycled Tyre Rubber Modified Bitumens for road asphalt mixtures: A literature review,” Construction and Building Materials. 49: 863–881, 2013, doi: 10.1016/j.conbuildmat.2013.09.007.
M. Porto, P. Caputo, V. Loise, S. Eskandarsefat, B. Teltayev, and C. O. Rossi.2019,“Bitumen and bitumen modification: A review on latest advances,” Applied Sciences (Switzerland). 9(4) doi: 10.3390/app9040742.
R. K. Padhan, A. Sreeram, and C. S. Mohanta, 2019. “Chemically recycled polyvinyl chloride as a bitumen modifier: synthesis, characterisation and performance evaluation,” Road Materials and Pavement Design, 22: 639–652, doi: 10.1080/14680629.2019.1614968.
G. Polacco, S. Filippi, F. Merusi, and G. Stastna, 2015. “A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility,” Advances in Colloid and Interface Science. doi: 10.1016/j.cis.2015.07.010.
A.-R. Al-Hadidy and T. Yi-qiu, “Effect of Styrene-Butadiene-Styrene on the Properties of Asphalt and Stone-Matrix-Asphalt Mixture,” Journal of Materials in Civil Engineering, 23: 504–510, 2011, doi: 10.1061/(ASCE)MT.1943-5533.0000185.
A. I. B. Farouk et al., “Effects of mixture design variables on rubber–bitumen interaction: properties of dry mixed rubberized asphalt mixture,” Materials and Structures/Materiaux et Constructions, 50(1): 1–10, 2017, doi: 10.1617/s11527-016-0932-3.
S. Kocak and M. E. Kutay, “Fatigue performance assessment of recycled tire rubber modified asphalt mixtures using viscoelastic continuum damage analysis and AASHTOWare pavement ME design,” Construction and Building Materials, 248: 118658, 2020, doi: 10.1016/j.conbuildmat.2020.118658.
M. B. Khurshid, N. A. Qureshi, A. Hussain, and M. J. Iqbal, “Enhancement of Hot Mix Asphalt (HMA) Properties Using Waste Polymers,” Arabian Journal for Science and Engineering, 44(10): 8239–8248, 2019, doi: 10.1007/s13369-019-03748-3.
V. Venudharan, K. P. Biligiri, J. B. Sousa, and G. B. Way, 2017, “Asphalt-rubber gap-graded mixture design practices: a state-of-the-art research review and future perspective,” Road Materials and Pavement Design, 18: 730–752, doi: 10.1080/14680629.2016.1182060.
F. Moreno, M. Sol, J. Martín, M. Pérez, and M. C. Rubio, 2013, “The effect of crumb rubber modifier on the resistance of asphalt mixes to plastic deformation,” Materials & Design, 47: 274–280, doi: https://doi.org/10.1016/j.matdes.2012.12.022.
A. Behroozikhah, S. H. Morafa, and S. Aflaki, 2017, “Investigation of fatigue cracks on RAP mixtures containing Sasobit and crumb rubber based on fracture energy,” Construction and Building Materials, 141: 526–532, doi: 10.1016/j.conbuildmat.2017.03.011.
A. Razmi and M. M. Mirsayar, “Fracture resistance of asphalt concrete modified with crumb rubber at low temperatures,” International Journal of Pavement Research and Technology, vol. 11, no. 3, pp. 265–273, 2018, doi: 10.1016/j.ijprt.2017.10.003.
M. Fakhri, E. Amoosoltani, and M. R. M. Aliha, “Crack behavior analysis of roller compacted concrete mixtures containing reclaimed asphalt pavement and crumb rubber,” Engineering Fracture Mechanics, vol. 180, pp. 43–59, 2017, doi: https://doi.org/10.1016/j.engfracmech.2017.05.011.
X. Chen and M. Solaimanian, “Evaluating fracture properties of crumb rubber modified asphalt mixes,” International Journal of Pavement Research and Technology, vol. 12, no. 4, pp. 407–415, 2019, doi: 10.1007/s42947-019-0048-6.
S. A. Tahami, A. F. Mirhosseini, S. Dessouky, H. Mork, and A. Kavussi, “The use of high content of fine crumb rubber in asphalt mixes using dry process,” Construction and Building Materials, vol. 222, pp. 643–653, 2019, doi: 10.1016/j.conbuildmat.2019.06.180.
S. W. Abusharar, “Laboratory Evaluation of Rubberized Asphalt Using the Dry Process,” Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 2458-9403, vol. 3, no. 5, pp. 4815–4820, 2016.
H. Wang, Z. Dang, L. Li, and Z. You, 2013. “Analysis on fatigue crack growth laws for crumb rubber modified (CRM) asphalt mixture,” Construction and Building Materials, 47: 1342–1349, doi: https://doi.org/10.1016/j.conbuildmat.2013.06.014.
N. A. Hassan, G. Airey, R. P. Jaya, M. Z. H. Mahmud, and N. Mashros, 2014. “Use of Imaging Techniques for Viewing the Internal Structure of Rubberised Asphalt Mixtures,” Applied Mechanics and Materials, 695: 8–11, doi: 10.4028/www.scientific.net/amm.695.8.
G. R. Irwin, 1957 “Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate," ,” Journal of Applied Mechanics, 24
M. Reich et al., 1979. “Application of fracture mechanics methods in safety analysis of piping components in subcreep and creep behavior,” Nuclear Engineering and Design, doi: 10.1016/0029-5493(79)90089-X.
M. P. Wagoner, W. G. Buttlar, and G. H. Paulino, 2005.“Disk-shaped compact tension test for asphalt concrete fracture,” Experimental Mechanics, 45(3): 270–277, doi: 10.1177/0014485105053205.
N. Abdul Hassan et al., 2019, “Engineering properties of crumb rubber modified dense-graded asphalt mixtures using dry process,” IOP Conference Series: Earth and Environmental Science, 220(1) doi: 10.1088/1755-1315/220/1/012009.
R. Wang, G. Xu, X. Chen, W. Zhou, and H. Zhang, 2019. “Evaluation of aging resistance for high-performance crumb tire rubber compound modified asphalt,” Construction and Building Materials. 218: 497–505. doi: 10.1016/j.conbuildmat.2019.05.124.
S. Angelone, M. Cauhapé Casaux, M. Borghi, and F. O. Martinez, “Green pavements: reuse of plastic waste in asphalt mixtures,” Materials and Structures. 49(5): 1655–1665, 2016, doi: 10.1617/s11527-015-0602-x.
G. White and G. Reid, 2018. “Recycled waste plastic for extending and modifying asphalt binders,” Symposium on Pavement Surface Characteristics (SURF), May: 1–13,
H. R. Radeef et al., 2021. “Enhanced Dry Process Method for Modified Asphalt Containing Plastic Waste,” Frontiers in Materials, 8: 247, doi: 10.3389/fmats.2021.700231.
B. Mishra and M. Gupta, 2018. “Use of Plastic Waste in Bituminous Mixes by Wet and Dry Method,” Proceedings of the Institution of Civil Engineers - Municipal Engineer, 173: 1–41, doi: 10.1680/jmuen.18.00014.
A. M. A. Abdo, “Investigation the effects of adding waste plastic on asphalt mixes performance,” ARPN Journal of Engineering and Applied Sciences, 12(15): 4351–4356, 2017.
Z. Chen et al., 2019, “Low temperature and fatigue characteristics of treated crumb rubber modified asphalt after a long term aging procedure,” Journal of Cleaner Production. 234: 1262–1274. doi: 10.1016/j.jclepro.2019.06.147.
M. R. Kakar, M. O. Hamzah, and J. Valentin, 2017. “Analyzing the stripping potential of warm mix asphalt using imaging technique,” IOP Conference Series: Materials Science and Engineering, 236(1) doi: 10.1088/1757-899X/236/1/012013.
T. Niu, R. Roque, and G. A. Lopp, 2014, “Development of a binder fracture test to determine fracture energy properties,” Road Materials and Pavement Design, 15(sup1): 219–238, doi: 10.1080/14680629.2014.927412.
Y. Huang et al., 2018. “Utilization of waste nylon wire in stone matrix asphalt mixtures,” Waste Management, 78(1): 948–954, doi: https://doi.org/10.1016/j.wasman.2018.06.055.
P. Nana et al., 2019. “Evaluation of incorporating plastic wastes into asphalt materials for road construction in Ghana Evaluation of incorporating plastic wastes into asphalt materials for road construction in Ghana,” Cogent Environmental Science, 5(1), doi: 10.1080/23311843.2019.1576373.
K. L. Vasconcelos and L. B. Bernucci, 2012, “Effect of Temperature on the Indirect Tensile Strength Test of Asphalt Mixtue,” Eurasphalt & Eurobitume Congress,. 5: 13–15, doi: 10.1016/j.jde.2011.08.045.
S. Tang et al., 2014, “Evaluate the fracture and fatigue resistances of hot mix asphalt containing high percentage reclaimed asphalt pavement (RAP) materials at low and intermediate temperatures,” Graduate Theses and Dissertations. 13782.[Online]. Available: http://lib.dr.iastate.edu/etd
T. W. Hsu, W. K. Yang, and J. X. Wang, 2013, “Mechanical characterization of Superpave gradation between passing through and below restriction zone,” International Journal of Pavement Research and Technology, doi: 10.6135/ijprt.org.tw/2013.6(5).539.
Z. Wu, L. N. Mohammad, L. B. Wang, and M. A. Mull, “Fracture resistance characterization of Superpave mixtures using the semi-circular bending test,” Journal of ASTM Internationaloi: 10.1520/JAI12264.
S. Im, Y.-R. R. Kim, and H. Ban, 2013, “Rate- and temperature-dependent fracture characteristics of asphaltic paving mixtures,” Journal of Testing and Evaluation 41(2), doi: 10.1520/JTE20120174.
A. Braham and B. S. Underwood, 2016, “State of the Art and Practice in Fatigue Cracking Evaluation of Asphalt Concrete Pavements,” Association of Asphalt Paving Technologists, 156, [Online]. Available: http://asphalttechnology.org/downloads/Fatigue_Cracking_of_Asphalt_Pavements_2017_06.pdf
M. Marasteanu et al., 2007. “Investigation of Low Temperature Cracking in Asphalt Pavements National Pooled Fund Study 776,” Transportation Research,
H. Ying, M. A. Elseifi, L. N. Mohammad, and H. A. Aglan, 2013. “A Crack Propagation Model for Asphalt Mixtures Based on the Cyclic Semi-Circular Bending Test,” Transportation Research Board 92nd Annual Meeting,
R. Nemati, K. Haslett, E. V. Dave, and J. E. Sias, 2019. “Development of a rate-dependent cumulative work and instantaneous power-based asphalt cracking performance index,” Road Materials and Pavement Design, 20(sup1): S315–S331, doi: 10.1080/14680629.2019.1586753.
H. Ozer, I. L. Al-Qadi, J. Lambros, A. El-Khatib, P. Singhvi, and B. Doll, 2016. “Development of the fracture-based flexibility index for asphalt concrete cracking potential using modified semi-circle bending test parameters,” Construction and Building Materials, doi: 10.1016/j.conbuildmat.2016.03.144.
M. R. M. M. Aliha, H. Behbahani, H. Fazaeli, and M. H. Rezaifar, 2014, “Study of characteristic specification on mixed mode fracture toughness of asphalt mixtures,” Construction and Building Materials, vol. 54: 623–635, doi: 10.1016/j.conbuildmat.2013.12.097.
X. J. Li and M. O. Marasteanu, 2010, “Using Semi Circular Bending Test to Evaluate Low Temperature Fracture Resistance for Asphalt Concrete,” Experimental Mechanics, 50: 867–876, doi: 10.1007/s11340-009-9303-0.
F. Pérez-jiménez, R. Botella, K.-H. Moon, and M. Marasteanu, 2013. “Effect of load application rate and temperature on the fracture energy of asphalt mixtures. Fénix and semi-circular bending tests,” Construction and Building Materials, 48: 1067–1071, doi:https://doi.org/10.1016/j.conbuildmat.2013.07.084.
K. E. Haslett, 2018. “Evaluation of Cracking Indices for Asphalt Mixtures Using SCB Tests at Different Temperatures and Loading Rates Evaluation of Cracking Indices for Asphalt Mixtures Using SCB Tests at,” Honors Theses and Capstones, 380,
G. Nsengiyumva, T. You, and Y. R. Kim, 2017. “Experimental-statistical investigation of testing variables of a semicircular bending (SCB) fracture test repeatability for bituminous mixtures,” Journal of Testing and Evaluation, 45(5): 1691–1701. doi: 10.1520/JTE20160103.
H. Ozer, I. L. Al-Qadi, P. Singhvi, T. Khan, J. Rivera-Perez, and A. El-Khatib, 2016. “Fracture characterization of asphalt mixtures with high recycled content using Illinois semicircular bending test method and flexibility index,” Transportation Research Record, doi: 10.3141/2575-14.
Y. R. Kim and F. T. S. Aragão, 2013. “Microstructure modeling of rate-dependent fracture behavior in bituminous paving mixtures,” Finite Elements in Analysis and Design, doi: 10.1016/j.finel.2012.08.004