EVALUATION OF DRAW SOLUTIONS FOR FORWARD OSMOSIS USING A SODIUM ALGINATE-BACTERIAL CELLULOSE MEMBRANE FOR WATER RECOVERY
DOI:
https://doi.org/10.11113/aej.v12.16766Keywords:
Bacterial cellulose, Draw solution, Forward osmosis, Response surface methodology, Sodium alginate, Water recoveryAbstract
Forward osmosis (FO) is an emerging membrane technology that is comparable with existing industrial membrane separation processes. Several studies have shown the potential of bacterial cellulose-alginate (BCA) as membrane material for FO system. An ideal draw solution (DS) compatible with this material was investigated. The three solutions used in the study include NaCl, MgCl2, and fructose. A simulated dirty water was used as the feed solution (FS) and a BCA as the membrane. An optimization study was conducted using central composite design (CCD) with the aid of Design Expert 7.0.0. The optimization was based on a fitted linear model analyzed through ANOVA with the normalized water flux maximized. The optimal solution was determined to be fructose with operating conditions at an osmotic pressure of 70 bar and a flow rate of 300 mL/min. The normalized water flux given these optimal conditions is predicted to be 1.437 LMH∙mm with a desirability of 0.768.
References
Almaden, C. R. 2014. Protecting the Water Supply: The Philippine Experience. Journal of Social, Political and Economic Studies. 39(4): 467-493. Online: https://ssrn.com/abstract=2542792
Asian Development Bank. 2016. Asian Water Development Outlook 2016: Strengthening Water Security in Asia and the Pacific. Online:https://www.adb.org/publications/asian-water-development-outlook-2016
Asian Development Bank. 2020. Asian Water Development Outlook 2020: Advancing Water Security across Asia and the Pacific. Online:https://www.adb.org/sites/default/files/publication/663931/awdo-2020.pdf
Elimelech, M and Phillip, W. A. 2011. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science. 333(6043): 712-717. DOI: https://doi.org/10.1126/science.1200488
Suwaileh, W., Pathak, N., Shon, H., and Hilal, N. 2020. Forward Osmosis Membranes and Processes: A Comprehensive Review of Research Trends and Future Outlook. Desalination. 485(114455). DOI: https://doi.org/10.1016/j.desal.2020.114455
Lee, S., Boo, C., Elimelech, M., and Hong, S. 2010. Comparison of Fouling Behavior in Forward Osmosis (FO) and Reverse Osmosis (RO). Journal of Membrane Science. 365(1-2): 34-39. DOI: https://doi.org/10.1016/j.memsci.2010.08.036
Xu, W., Chen, Q., and Ge, Q. 2017. Recent Advances in Forward Osmosis (FO) Membrane: Chemical Modifications on Membranes for FO Processes. Desalination. 419: 101-116. DOI: https://doi.org/10.1016/j.desal.2017.06.007
Akther, N., Sodiq, A., Giwa, A., Daer, S., Arafat, H. A., and Hasan, S. W. 2015. Recent Advancements in Forward Osmosis Desalination: A Review. Chemical Engineering Journal. 281: 502-522. DOI: https://doi.org/10.1016/j.cej.2015.05.080
Dang, N. T. B., Patacsil, L. B., Orbecido, A. H, Eusebio, R. C., and Beltran, A. B. 2018. Evaluation of Bacterial Cellulose-Sodium Alginate Forward Osmosis Membrane for Water Recovery. Jurnal Teknologi. 80 (3-2): 37-43. DOI: https://doi.org/10.11113/jt.v80.12742
Esa, F., Tasirin, S. M., and Rahman, N. A. 2014. Overview of Bacterial Cellulose Production and Application. Agriculture and Agricultural Science Procedia. 2: 113-119. DOI: https://doi.org/10.1016/j.aaspro.2014.11.017
Bautista-Patacsil, L., Ligaray, M. V., Sayao, J. P., Belosillo, J. R., Eusebio, R. C., Orbecido, A. H., and Beltran, A. B. 2020. Fabrication of Forward Osmosis Membrane Using Nata de Coco as Raw Materials for Desalination. Taiwan Water Conservancy. 68(1): 36-43. DOI: https://doi.org/10.6937/TWC.202003/PP_68(1).0004
Alberto, E. L., de Ocampo, A. N., Depasupil, C. G., Ligaray, M., Eusebio, R. C., Orbecido, A. H., Beltran, A. B., and Patacsil, L. B. 2019. Desalination Performance of a Forward Osmosis Membrane from Acetylated Nata de Coco (Bacterial Cellulose). AIP Conference Proceedings. 2124(1). DOI: https://doi.org/10.1063/1.5117085
Achilli, A., Cath, T. Y., and Childress, A. E. 2010. Selection of Inorganic-Based Draw Solutions for Forward Osmosis Applications. Journal of Membrane Science. 364(1-2): 233-241. DOI: https://doi.org/10.1016/j.memsci.2010.08.010
Ge, Q., Ling, M., and Chung, T. S. 2013. Draw Solutions for Forward Osmosis Processes: Developments, Challenges, and Prospects for the Future. Journal of Membrane Science. 442: 225-237. DOI: https://doi.org/10.1016/j.memsci.2013.03.046
Luo, H., Wang, Q., Zhang, T. C., Tao, T., Zhou, A., Chen, L., and Bie, X. 2014. A Review on the Recovery Methods of Draw Solutes in Forward Osmosis. Journal of Water Process Engineering. 4: 212-223. DOI: https://doi.org/10.1016/j.jwpe.2014.10.006
Holloway, R. W., Maltos, R., Vanneste, J., and Cath, T. Y. 2015. Mixed Draw Solutions for Improved Forward Osmosis Performance. Journal of Membrane Science. 491: 121-131. DOI: https://doi.org/10.1016/j.memsci.2015.05.016
Dou, P., Zhao, S., Song, J., He, H., She, Q., Li, X., Zhang, Y., and He, T. 2019. Forward Osmosis Concentration of a Vanadium Leaching Solution. Journal of Membrane Science. 582: 164-171. DOI: https://doi.org/10.1016/j.memsci.2019.04.012
Bowden, K. S., Achilli, A., and Childress, A. E. 2012. Organic Ionic Salt Draw Solutions for Osmotic Membrane Bioreactors. Bioresource Technology. 122: 207-216. DOI: https://doi.org/10.1016/j.biortech.2012.06.026
Roy, D., Rahni, M., Pierre, P., and Yargeau, V. 2016. Forward Osmosis for the Concentration and Reuse of Process Saline Wastewater. Chemical Engineering Journal. 287: 277-284. DOI: https://doi.org/10.1016/j.cej.2015.11.012
Ryu, H., Kim, K., Cho, H., Park, E., Chang, Y. K., and Han, J. 2020. Nutrient-driven Forward Osmosis Coupled with Microalgae Cultivation for Energy Efficient Dewatering of Microalgae. Algal Research. 48: 101880. DOI: https://doi.org/10.1016/j.algal.2020.101880
Rodriguex-Saona, L. E., Giusti, M. M., Durst, R. W., and Wrolstad, R. E. 2001. Development and Process Optimization of Red Radish Concentrate Extract as Potential Natural Red Colorant. Journal of Food Processing and Preservation. 25(3):165-182. DOI: https://doi.org/10.1111/j.1745-4549.2001.tb00452.x
Suratago, T., Taokaew, S., Kanjanamosit, N., Kanjanaprapakul, K., Burapatana, V., and Phisalaphong, M. 2015. Development of Bacterial Cellulose/Alginate Nanocomposite Membrane for Separation of Ethanol-Water Mixtures. Journal of Industrial and Engineering Chemistry. 32: 305-312. DOI: https://doi.org/10.1016/j.jiec.2015.09.004
Chrzanowska, E., Gierszewska, M., Kujawa, J., Raszkowska-Kaczor, A., and Kujawski, W. 2018. Development and Characterization of Polyamide-supported Chitosan Nanocomposite Membranes for Hydrophilic Pervaporation. Polymers. 10(8). DOI: https://doi.org/10.3390/polym10080868
Bhinder, A., Shabani, S., and Sadrzadeh, M. 2017. Effect of Internal and External Concentration Polarizations on the Performance of Forward Osmosis Process. In Osmotically Driven Membrane Processes - Approach, Development and Current Status, Du, H., Thompson, A., and Wang, X. (Eds.), [Online]. DOI: https://doi.org/10.5772/intechopen.71343
Shao, W., Liu, H., Liu, X., Wang, S., Wu, J., Zhang, R., … and Huang, M. 2015. Development of Silver Sulfadiazine Loaded Bacterial Cellulose/Sodium Alginate Composite Films with Enhanced Antibacterial Property. Carbohydrate Polymers. 132: 351-358. DOI: https://doi.org/10.1016/j.carbpol.2015.06.057
Bai, Q., Xiong, Q., Li, C., Shen, Y., and Uyama, H. 2018. Hierarchical Porous Carbons from a Sodium Alginate / Bacterial Cellulose Composite for High-Performance Supercapacitor Electrodes. Applied Surface Science. 455: 795-807. DOI: https://doi.org/10.1016/j.apsusc.2018.05.006
McCutcheon, J. R. and Elimelech, M. 2006. Influence of Concentrative and Dilutive Internal Concentration Polarization on Flux Behavior in Forward Osmosis. Journal of Membrane Science. 284(1-2): 237-247. DOI https://doi.org/10.1016/j.memsci.2006.07.049
Gruber, S. M. F., Johnson, C. J., Tang, C. Y., Jensen, M. H., Yde, L., and Hélix-Nielsen, C. 2011. Computational Fluid Dynamics Simulations of Flow and Concentration Polarization in Forward Osmosis Membrane Systems. Journal of Membrane Science. 379(1-2): 488-495. DOI: https://doi.org/10.1016/j.memsci.2011.06.022
Sagiv, A. and Semiat, R. 2011. Finite Element Analysis of Forward Osmosis Process using NaCl Solutions. Journal of Membrane Science. 379(1-2): 86-96. DOI: https://doi.org/10.1016/j.memsci.2011.05.042
McCutcheon, J. R. and Elimelech, M. 2007. Modeling Water Flux in Forward Osmosis: Implications for Improved Membrane Design. AIChE Journal. 53(7): 1736-1744. DOI: https://doi.org/10.1002/aic.11197
Phuntsho, S., Sahebi, S., Majeed, T., Lofti, F., Kim, J., and Shon, H. 2013. Assesing the Major Factors Affecting the Performances of Forward Osmosis and Its Implications on the Desalination Process. Chemical Engineering Journal. 231: 484-496. DOI https://doi.org/10.1016/j.cej.2013.07.058
Wenten, I. G., Khoiruddin, K., Reynard, R., Lugito, G., and Julian, H. 2020. Advancement of Forward Osmosis (FO) Membrane for Fruit Juice Concentration. Journal of Food Engineering. 290: 110216 DOI: https://doi.org/10.1016/j.jfoodeng.2020.110216
Chun, Y., Mulcahy, D., Zou, L., and Kim, I. 2017. A Short Review of Membrane Fouling in Forward Osmosis Processes. Membranes. 7(2).DOI https://doi.org/10.3390/membranes7020030
Tang, C. Y., She, Q., Lay, W. C. L., Wang, R., and Fane, A. G. 2010. Coupled Effects of Internal Concentration Polarization and Fouling On Flux Behavior of Forward Osmosis Membranes During Humic Acid Filtration. Journal of Membrane Science. 354(1-2): 123-133. DOI: https://doi.org/10.1016/j.memsci.2010.02.059
She, Q., Wang, R., Fane, A. G., and Tang, C. Y. 2016. Membrane Fouling in Osmotically Driven Membrane Processes: A Review. Journal of Membrane Science. 499: 201-233. DOI: https://doi.org/10.1016/j.memsci.2015.10.040
Suh, C. and Lee, S. 2013. Modeling Reverse Draw Solute Flux in Forward Osmosis with External Concentration Polarization in Both Sides of the Draw and Feed Solution. Journal of Membrane Science. 427: 365-374. DOI: https://doi.org/10.1016/j.memsci.2012.08.033
Abid, H. S., Johnson, D. J., Hashaikeh, R., and Hilal, N. 2017. A Review of Efforts to Reduce Membrane Fouling by Control of Feed Spacer Characteristics. Desalination. 420: 384-402. DOI: https://doi.org/10.1016/j.desal.2017.07.019
Wong, M., Martinez, K., Ramon, G. Z., and Hoek, E. 2012. Impacts of Operating Conditions and Solution Chemistry on Osmotic Membrane Structure and Performance. Desalination. 287: 340-349. DOI: https://doi.org/10.1016/j.desal.2011.10.013
Terefe, N. S., Janakievski, F., Glagovskaia, O., and Stockmann, R. 2019. Forward Osmosis: An Emerging Non-Thermal Concentration Technology for Liquid Foods. In Reference Module in Food Science, [Online]. DOI: https://doi.org/10.1016/B978-0-08-100596-5.21871-4
Herron, J., Beaudry, E. G., Jochums, C. E., and Medina, L. E. 1994. Osmotic Concentration Apparatus for Direct Osmotic Concentration of Fruit Juices. USA Patent Application 986921.
Johnson, D. J., Suwaileh, W. A., Mohammed, A. W., and Hilal, N. 2018. Osmotic's Potential: An Overview of Draw Solutes for Forward Osmosis. Desalination. 434: 100-120. DOI: https://doi.org/10.1016/j.desal.2017.09.017
Wu, C., Mouri, H., Chen, S., Zhang, D., Koga, M., and Kobayashi, J. 2016. Removal of Trace-amount Mercury from Wastewater by Forward Osmosis. Journal of Water Process Engineering. 14: 108-116. DOI: https://doi.org/10.1016/j.jwpe.2016.10.010