• Alyssa Mae Acyatan Chemical Engineering Department, De La Salle University, 2401 Taft Avenue Manila 1004 Philippines
  • Czarielle Audrey Lim Chemical Engineering Department, De La Salle University, 2401 Taft Avenue Manila 1004 Philippines
  • Aileen Orbecido Chemical Engineering Department, De La Salle University, 2401 Taft Avenue Manila 1004 Philippines
  • Liza Patacsil Department of Engineering Science, College of Engineering and Agro-Industrial Technology, University of the Philippines Los Baños, College, Los Baños, Laguna 4031 Philippines
  • Arnel Beltran Center for Engineering Sustainable and Development Research, De La Salle University, 2401 Taft Avenue Manila 1004 Philippines




Bacterial cellulose, Draw solution, Forward osmosis, Response surface methodology, Sodium alginate, Water recovery


Forward osmosis (FO) is an emerging membrane technology that is comparable with existing industrial membrane separation processes. Several studies have shown the potential of bacterial cellulose-alginate (BCA) as membrane material for FO system. An ideal draw solution (DS) compatible with this material was investigated. The three solutions used in the study include NaCl, MgCl2, and fructose. A simulated dirty water was used as the feed solution (FS) and a BCA as the membrane. An optimization study was conducted using central composite design (CCD) with the aid of Design Expert 7.0.0. The optimization was based on a fitted linear model analyzed through ANOVA with the normalized water flux maximized. The optimal solution was determined to be fructose with operating conditions at an osmotic pressure of 70 bar and a flow rate of 300 mL/min. The normalized water flux given these optimal conditions is predicted to be 1.437 LMH∙mm with a desirability of 0.768.


Almaden, C. R. 2014. Protecting the Water Supply: The Philippine Experience. Journal of Social, Political and Economic Studies. 39(4): 467-493. Online: https://ssrn.com/abstract=2542792

Asian Development Bank. 2016. Asian Water Development Outlook 2016: Strengthening Water Security in Asia and the Pacific. Online:https://www.adb.org/publications/asian-water-development-outlook-2016

Asian Development Bank. 2020. Asian Water Development Outlook 2020: Advancing Water Security across Asia and the Pacific. Online:https://www.adb.org/sites/default/files/publication/663931/awdo-2020.pdf

Elimelech, M and Phillip, W. A. 2011. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science. 333(6043): 712-717. DOI: https://doi.org/10.1126/science.1200488

Suwaileh, W., Pathak, N., Shon, H., and Hilal, N. 2020. Forward Osmosis Membranes and Processes: A Comprehensive Review of Research Trends and Future Outlook. Desalination. 485(114455). DOI: https://doi.org/10.1016/j.desal.2020.114455

Lee, S., Boo, C., Elimelech, M., and Hong, S. 2010. Comparison of Fouling Behavior in Forward Osmosis (FO) and Reverse Osmosis (RO). Journal of Membrane Science. 365(1-2): 34-39. DOI: https://doi.org/10.1016/j.memsci.2010.08.036

Xu, W., Chen, Q., and Ge, Q. 2017. Recent Advances in Forward Osmosis (FO) Membrane: Chemical Modifications on Membranes for FO Processes. Desalination. 419: 101-116. DOI: https://doi.org/10.1016/j.desal.2017.06.007

Akther, N., Sodiq, A., Giwa, A., Daer, S., Arafat, H. A., and Hasan, S. W. 2015. Recent Advancements in Forward Osmosis Desalination: A Review. Chemical Engineering Journal. 281: 502-522. DOI: https://doi.org/10.1016/j.cej.2015.05.080

Dang, N. T. B., Patacsil, L. B., Orbecido, A. H, Eusebio, R. C., and Beltran, A. B. 2018. Evaluation of Bacterial Cellulose-Sodium Alginate Forward Osmosis Membrane for Water Recovery. Jurnal Teknologi. 80 (3-2): 37-43. DOI: https://doi.org/10.11113/jt.v80.12742

Esa, F., Tasirin, S. M., and Rahman, N. A. 2014. Overview of Bacterial Cellulose Production and Application. Agriculture and Agricultural Science Procedia. 2: 113-119. DOI: https://doi.org/10.1016/j.aaspro.2014.11.017

Bautista-Patacsil, L., Ligaray, M. V., Sayao, J. P., Belosillo, J. R., Eusebio, R. C., Orbecido, A. H., and Beltran, A. B. 2020. Fabrication of Forward Osmosis Membrane Using Nata de Coco as Raw Materials for Desalination. Taiwan Water Conservancy. 68(1): 36-43. DOI: https://doi.org/10.6937/TWC.202003/PP_68(1).0004

Alberto, E. L., de Ocampo, A. N., Depasupil, C. G., Ligaray, M., Eusebio, R. C., Orbecido, A. H., Beltran, A. B., and Patacsil, L. B. 2019. Desalination Performance of a Forward Osmosis Membrane from Acetylated Nata de Coco (Bacterial Cellulose). AIP Conference Proceedings. 2124(1). DOI: https://doi.org/10.1063/1.5117085

Achilli, A., Cath, T. Y., and Childress, A. E. 2010. Selection of Inorganic-Based Draw Solutions for Forward Osmosis Applications. Journal of Membrane Science. 364(1-2): 233-241. DOI: https://doi.org/10.1016/j.memsci.2010.08.010

Ge, Q., Ling, M., and Chung, T. S. 2013. Draw Solutions for Forward Osmosis Processes: Developments, Challenges, and Prospects for the Future. Journal of Membrane Science. 442: 225-237. DOI: https://doi.org/10.1016/j.memsci.2013.03.046

Luo, H., Wang, Q., Zhang, T. C., Tao, T., Zhou, A., Chen, L., and Bie, X. 2014. A Review on the Recovery Methods of Draw Solutes in Forward Osmosis. Journal of Water Process Engineering. 4: 212-223. DOI: https://doi.org/10.1016/j.jwpe.2014.10.006

Holloway, R. W., Maltos, R., Vanneste, J., and Cath, T. Y. 2015. Mixed Draw Solutions for Improved Forward Osmosis Performance. Journal of Membrane Science. 491: 121-131. DOI: https://doi.org/10.1016/j.memsci.2015.05.016

Dou, P., Zhao, S., Song, J., He, H., She, Q., Li, X., Zhang, Y., and He, T. 2019. Forward Osmosis Concentration of a Vanadium Leaching Solution. Journal of Membrane Science. 582: 164-171. DOI: https://doi.org/10.1016/j.memsci.2019.04.012

Bowden, K. S., Achilli, A., and Childress, A. E. 2012. Organic Ionic Salt Draw Solutions for Osmotic Membrane Bioreactors. Bioresource Technology. 122: 207-216. DOI: https://doi.org/10.1016/j.biortech.2012.06.026

Roy, D., Rahni, M., Pierre, P., and Yargeau, V. 2016. Forward Osmosis for the Concentration and Reuse of Process Saline Wastewater. Chemical Engineering Journal. 287: 277-284. DOI: https://doi.org/10.1016/j.cej.2015.11.012

Ryu, H., Kim, K., Cho, H., Park, E., Chang, Y. K., and Han, J. 2020. Nutrient-driven Forward Osmosis Coupled with Microalgae Cultivation for Energy Efficient Dewatering of Microalgae. Algal Research. 48: 101880. DOI: https://doi.org/10.1016/j.algal.2020.101880

Rodriguex-Saona, L. E., Giusti, M. M., Durst, R. W., and Wrolstad, R. E. 2001. Development and Process Optimization of Red Radish Concentrate Extract as Potential Natural Red Colorant. Journal of Food Processing and Preservation. 25(3):165-182. DOI: https://doi.org/10.1111/j.1745-4549.2001.tb00452.x

Suratago, T., Taokaew, S., Kanjanamosit, N., Kanjanaprapakul, K., Burapatana, V., and Phisalaphong, M. 2015. Development of Bacterial Cellulose/Alginate Nanocomposite Membrane for Separation of Ethanol-Water Mixtures. Journal of Industrial and Engineering Chemistry. 32: 305-312. DOI: https://doi.org/10.1016/j.jiec.2015.09.004

Chrzanowska, E., Gierszewska, M., Kujawa, J., Raszkowska-Kaczor, A., and Kujawski, W. 2018. Development and Characterization of Polyamide-supported Chitosan Nanocomposite Membranes for Hydrophilic Pervaporation. Polymers. 10(8). DOI: https://doi.org/10.3390/polym10080868

Bhinder, A., Shabani, S., and Sadrzadeh, M. 2017. Effect of Internal and External Concentration Polarizations on the Performance of Forward Osmosis Process. In Osmotically Driven Membrane Processes - Approach, Development and Current Status, Du, H., Thompson, A., and Wang, X. (Eds.), [Online]. DOI: https://doi.org/10.5772/intechopen.71343

Shao, W., Liu, H., Liu, X., Wang, S., Wu, J., Zhang, R., … and Huang, M. 2015. Development of Silver Sulfadiazine Loaded Bacterial Cellulose/Sodium Alginate Composite Films with Enhanced Antibacterial Property. Carbohydrate Polymers. 132: 351-358. DOI: https://doi.org/10.1016/j.carbpol.2015.06.057

Bai, Q., Xiong, Q., Li, C., Shen, Y., and Uyama, H. 2018. Hierarchical Porous Carbons from a Sodium Alginate / Bacterial Cellulose Composite for High-Performance Supercapacitor Electrodes. Applied Surface Science. 455: 795-807. DOI: https://doi.org/10.1016/j.apsusc.2018.05.006

McCutcheon, J. R. and Elimelech, M. 2006. Influence of Concentrative and Dilutive Internal Concentration Polarization on Flux Behavior in Forward Osmosis. Journal of Membrane Science. 284(1-2): 237-247. DOI https://doi.org/10.1016/j.memsci.2006.07.049

Gruber, S. M. F., Johnson, C. J., Tang, C. Y., Jensen, M. H., Yde, L., and Hélix-Nielsen, C. 2011. Computational Fluid Dynamics Simulations of Flow and Concentration Polarization in Forward Osmosis Membrane Systems. Journal of Membrane Science. 379(1-2): 488-495. DOI: https://doi.org/10.1016/j.memsci.2011.06.022

Sagiv, A. and Semiat, R. 2011. Finite Element Analysis of Forward Osmosis Process using NaCl Solutions. Journal of Membrane Science. 379(1-2): 86-96. DOI: https://doi.org/10.1016/j.memsci.2011.05.042

McCutcheon, J. R. and Elimelech, M. 2007. Modeling Water Flux in Forward Osmosis: Implications for Improved Membrane Design. AIChE Journal. 53(7): 1736-1744. DOI: https://doi.org/10.1002/aic.11197

Phuntsho, S., Sahebi, S., Majeed, T., Lofti, F., Kim, J., and Shon, H. 2013. Assesing the Major Factors Affecting the Performances of Forward Osmosis and Its Implications on the Desalination Process. Chemical Engineering Journal. 231: 484-496. DOI https://doi.org/10.1016/j.cej.2013.07.058

Wenten, I. G., Khoiruddin, K., Reynard, R., Lugito, G., and Julian, H. 2020. Advancement of Forward Osmosis (FO) Membrane for Fruit Juice Concentration. Journal of Food Engineering. 290: 110216 DOI: https://doi.org/10.1016/j.jfoodeng.2020.110216

Chun, Y., Mulcahy, D., Zou, L., and Kim, I. 2017. A Short Review of Membrane Fouling in Forward Osmosis Processes. Membranes. 7(2).DOI https://doi.org/10.3390/membranes7020030

Tang, C. Y., She, Q., Lay, W. C. L., Wang, R., and Fane, A. G. 2010. Coupled Effects of Internal Concentration Polarization and Fouling On Flux Behavior of Forward Osmosis Membranes During Humic Acid Filtration. Journal of Membrane Science. 354(1-2): 123-133. DOI: https://doi.org/10.1016/j.memsci.2010.02.059

She, Q., Wang, R., Fane, A. G., and Tang, C. Y. 2016. Membrane Fouling in Osmotically Driven Membrane Processes: A Review. Journal of Membrane Science. 499: 201-233. DOI: https://doi.org/10.1016/j.memsci.2015.10.040

Suh, C. and Lee, S. 2013. Modeling Reverse Draw Solute Flux in Forward Osmosis with External Concentration Polarization in Both Sides of the Draw and Feed Solution. Journal of Membrane Science. 427: 365-374. DOI: https://doi.org/10.1016/j.memsci.2012.08.033

Abid, H. S., Johnson, D. J., Hashaikeh, R., and Hilal, N. 2017. A Review of Efforts to Reduce Membrane Fouling by Control of Feed Spacer Characteristics. Desalination. 420: 384-402. DOI: https://doi.org/10.1016/j.desal.2017.07.019

Wong, M., Martinez, K., Ramon, G. Z., and Hoek, E. 2012. Impacts of Operating Conditions and Solution Chemistry on Osmotic Membrane Structure and Performance. Desalination. 287: 340-349. DOI: https://doi.org/10.1016/j.desal.2011.10.013

Terefe, N. S., Janakievski, F., Glagovskaia, O., and Stockmann, R. 2019. Forward Osmosis: An Emerging Non-Thermal Concentration Technology for Liquid Foods. In Reference Module in Food Science, [Online]. DOI: https://doi.org/10.1016/B978-0-08-100596-5.21871-4

Herron, J., Beaudry, E. G., Jochums, C. E., and Medina, L. E. 1994. Osmotic Concentration Apparatus for Direct Osmotic Concentration of Fruit Juices. USA Patent Application 986921.

Johnson, D. J., Suwaileh, W. A., Mohammed, A. W., and Hilal, N. 2018. Osmotic's Potential: An Overview of Draw Solutes for Forward Osmosis. Desalination. 434: 100-120. DOI: https://doi.org/10.1016/j.desal.2017.09.017

Wu, C., Mouri, H., Chen, S., Zhang, D., Koga, M., and Kobayashi, J. 2016. Removal of Trace-amount Mercury from Wastewater by Forward Osmosis. Journal of Water Process Engineering. 14: 108-116. DOI: https://doi.org/10.1016/j.jwpe.2016.10.010




How to Cite

Acyatan, A. M., Lim, C. A., Orbecido, A., Patacsil, L., & Beltran, A. (2022). EVALUATION OF DRAW SOLUTIONS FOR FORWARD OSMOSIS USING A SODIUM ALGINATE-BACTERIAL CELLULOSE MEMBRANE FOR WATER RECOVERY. ASEAN Engineering Journal, 12(2), 45-53. https://doi.org/10.11113/aej.v12.16766