A COMPARATIVE STUDY OF MISSING RAINFALL DATA ANALYSIS USING THE METHODS OF INVERSED SQUARE DISTANCE AND ARITHMETIC MEAN

Authors

  • Ekha Yogafanny Department of Environmetal Engineering, Faculty of Mineral Technology, Universitas Pembangunan Nasional Veteran Yogyakarta, 55283, Indonesia
  • Djoko Legono Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia

DOI:

https://doi.org/10.11113/aej.v12.16974

Keywords:

Missing rainfall data, Inversed square distance, Arithmetic mean, Missing rainfall data, Inversed square distance, Arithmetic mean, RMSE, MAE

Abstract

In water resources planning and management, it is essential to have reliable rainfall data. In many cases, rainfall data under the guardian national/ local institution are incomplete. Some data are missing, both monthly and annually. The missing data may persist due to neither damage nor human error. This study aims to estimate the missing rainfall data using two methods, i.e., the inverse square distance and the arithmetic mean methods. The study compared the two mentioned methods using root mean square error (RMSE) and mean absolute error (MAE) and to determine the consistency of rainfall data in all stations using double mass curve analysis. This study utilized the rainfall data from Tepus, Semanu, Rongkop, and Tanjungsari Stations in Gunung Kidul Regency, Yogyakarta Province, Indonesia. The model performance was tested by the root mean square error (RMSE) and mean absolute error (MAE). The rainfall data consistency was determined by double mass curve analysis. The results showed that the arithmetic mean method performed better rather than the inverse square distance method. The smallest RMSE and MAE values in the arithmetic method at the four stations have confirmed the statement. The rainfall data consistency analyzed by the double mass curve is consistent in all stations except Tepus Station.

References

R. D. Kurniawan, R. Hadiani, and Setiono. 2017. Mengisi Data Hujan Yang Hilang dengan Metode Autoregressive dan Metode Reciprocal dengan Pengujian Debit Kala Ulang (Studi Kasus di Das Bakalan). e-Jurnal MATRIKS Tek. SIPIL. 5(4): 1315 – 1323. DOI: https://doi.org/10.20961/mateksi.v5i4.36912.

S. N. Z. A. Burhanuddin, S. M. Deni, and N. M. Ramli. 2015, February. Geometric Median for Missing Rainfall Data Imputation. AIP Conference Proceedings. 1643: 113–119. DOI: https://doi.org/10.1063/1.4907433.

[A. Bagiawan, S. M. Yuningsih, and D. Windatiningsih. 2011. Pengujian Data Hidrologi dalam Rangka Peningkatan Efektifitas dan Efisiensi Pengelolaan Sumber Daya Air. Jurnal Sumber Daya Air. 7(1): 1–17. DOI: https://doi.org/10.32679/jsda.v7i1.379.

M. Hasanpour Kashani and Y. Dinpashoh. 2012. Evaluation of Efficiency of Different Estimation Methods for Missing Climatological Data. Stochastic Environmental Research and Risk Assessment. 26(1): 59–71. DOI: https://doi.org/10.1007/s00477-011-0536-y.

N. I. Jaman and S. K. Adhikary. 2020. A Positive Kriging Approach for Missing Rainfall Estimation. Proceedings of The 5th International Conference on Civil Engineering for Sustainable Development. 1–10. ISBN: 9789843487643

R. J. Kuligowski and a. P. Barros. 1998. Using Artificial Neural Networks to Estimate Missing Rainfall Data. Journal of the American Water Resources Association. 34(6): 1437–1447. DOI: https://doi.org/10.1111/j.1752-1688.1998.tb05443.x.

R. P. De Silva, N. D. K. Dayawansa, and M. D. Ratnasiri. 2007, May. A Comparison of Methods Used in Estimating Missing Rainfall Data. Journal of Agricultural Sciences. 3(2): 101-108. DOI: https://doi.org/10.4038/jas.v3i2.8107.

F. Prawaka, A. Zakaria, and S. Tugiono. 2016, September. Analisis Data Curah Hujan yang Hilang dengan Menggunakan Metode Normal Ratio, Inversed Square Distance, dan Cara Rata-Rata Aljabar (Studi Kasus Curah Hujan Beberapa Stasiun Hujan Daerah Bandar Lampung). Journal Rekayasa Sipil dan Desain. 4(3): 397–406. http://journal.eng.unila.ac.id/index.php/jrsdd/article/view/418/pdf.

A. M. Armanuos, N. Al-Ansari, and Z. M. Yaseen. 2020, Cross Assessment of Twenty-One Different Methods for Missing Precipitation Data Estimation. Atmosphere.11(389): 1-34. DOI: https://doi.org/10.3390/ATMOS11040389.

C. Yozgatligil, S. Aslan, C. Iyigun, and I. Batmaz. 2013. Comparison of Missing Value Imputation Methods in Time Series: The Case of Turkish Meteorological Data. Theoretical and Applied Climatology. 112: 143–167. DOI: https://doi.org/10.1007/s00704-012-0723-x.

A. S. Yusman. 2018. Aplikasi Metode Normal Ratio dan Inversed Square Distance untuk Melengkapi Data Curah Hujan Kota Padang yang Hilang. Menara Ilmu. 12(9): 1–9. DOI :https://doi.org/10.33559/mi.v12i9.947.

I. W. Yasa, M. B. Budianto, and N. M. K. Santi. 2015. Analisis Beberapa Metode Pengisian Data Hujan yang Hilang di Wilayah Sungai Pulau Lombok. Spektrum Sipil.2(1): 49–60. https://spektrum.unram.ac.id/index.php/Spektrum/article/view/42.

N. F. A. Radi, R. Zakaria, S. Z. Satari, and M. A. Z. Azman. 2016, February. Spatial Dependence of Extreme Rainfall. Proceedings of 3rd ISM International Statistical Conference 2016 (ISM-III). 1842: 1–11. DOI:https://doi.org/10.1063/1.4982833.

H. P. G. M. Caldera, V. R. P. C. Piyathisse, and K. D. W. Nandalal. 2016. A Comparison of Methods of Estimating Missing Daily Rainfall Data. Engineer: Journal of the Institution of Engineers, Sri Lanka. 49(4): 1-8. DOI : https://doi.org/10.4038/engineer.v49i4.7232.

S. M. C. M. Nor, S. M. Shaharudin, S. Ismail, N. H. Zainuddin, and M. L. Tan. 2020. A Comparative Study of Different Imputation Methods for Daily Rainfall Data in East-Coast Peninsular Malaysia. Bulletin of Electrical Engineering and Informatics. 9(2): 635–643. DOI: https://doi.org/10.11591/eei.v9i2.2090.

W. Sanusi, W. Z. W. Zin, U. Mulbar, M. Danial, and S. Side. 2017. Comparison of The Methods to Estimate Missing Values in Monthly Precipitation Data. International Journal on Advanced Science, Engineering and Information Technology. 7(6): 2168–2174. DOI: https://doi.org/10.18517/ijaseit.7.6.2637.

F. Jahan, N. C. Sinha, M. M. Rahman, M. M. Rahman, M. S. H. Mondal, and M. A. Islam. 2019. Comparison of Missing Value Estimation Techniques in Rainfall Data of Bangladesh. Theoretical and Applied Climatology.136: 1115–1131. DOI: https://doi.org/10.1007/s00704-018-2537-y.

N. Kanda, H. S. Negi, M. S. Rishi, and M. . Shekhar. 2018. Performance of Various Techniques in Estimating Missing Climatological Data Over Snowbound Mountainous Areas of Karakoram Himalaya. Meteorological Applications. 25: 337 – 349. DOI: https://doi.org/10.1002/met.1699.

J. Suhaila, M. D. Sayang, and A. A. Jemain. 2008. Revised Spatial Weighting Methods for Estimation of Missing Rainfall Data. Asia-Pacific Journal of Atmospheric Sciences. 44(2): 93–104. ISSN: 19767633

H. Rizky, Y. N. Nasution, and R. Goejantoro. 2019. Analisis Data Curah Hujan yang Hilang Menggunakan Metode Inversed Square Distance. Proceedings of Seminar Nasional Matematika, Statistika, dan Aplikasinya. 1: 138–149. e-ISSN : 2657-232X

Downloads

Published

2022-06-01

How to Cite

Yogafanny, E., & Legono, D. (2022). A COMPARATIVE STUDY OF MISSING RAINFALL DATA ANALYSIS USING THE METHODS OF INVERSED SQUARE DISTANCE AND ARITHMETIC MEAN. ASEAN Engineering Journal, 12(2), 69-74. https://doi.org/10.11113/aej.v12.16974

Issue

Section

Articles