GROWTH RATE AND BIOCHEMICAL CHARACTERIZATION OF CHLORELLA PYRENOIDOSA CULTIVATED IN SUGARCANE VINASSE MEDIUM
DOI:
https://doi.org/10.11113/aej.v12.17156Keywords:
Chlorella pyrenoidosa, Freshwater, Growth rate, Nutrition, Vinasse wasteAbstract
Chlorella pyrenoidosa is a microalgae species that contains proteins, carbohydrates, amino acids, carotenoids, vitamins, and minerals. Due to its compounds, the researchers have attempted to make bioethanol using C. pyrenoidosa through a biorefinery approach. However, the ratio of bioethanol production towards the raw material needs of C. pyrenoidosa is still small because of its low carbohydrate content. Thus, in this research, vinasse is used as its growth medium to increase the carbohydrate content. The research objective is to study the effect of vinasse volume ratio and nutrient addition towards the size, optical density, carbohydrate composition, growth rate of the C. pyrenoidosa, and its evaluation as a biorefinery raw material. C. pyrenoidosa was cultivated in freshwater and vinasse (20 and 30% v/v) in mini ponds, equipped with lighting using 3280 lumens lamp, aeration with air, and Guillard as nutrient. In vinasse, the cultivation was done with and without periodic nutrient additions. The microalgae cell size was increased if cultivated in vinasse and given Guillard addition, which is 3.0-3.6 mm (in freshwater), 4.1-8.6 mm (in vinasse with nutrient every 2 days), 4.8-6.3 mm (in vinasse without nutrient every 2 days). The microalgae carbohydrate composition cultivated in vinasse was sharply increased compared to in freshwater. Thus, C. pyrenoidosa cultivated in vinasse is very potential for bioethanol production. Specific growth of C. pyrenoidosa in vinasse with nutrient is faster (0.087 day-1) than without nutrient (0.023 day-1) and in freshwater (0.062 day-1). Cultivated C. pyrenoidosa contains proteins, lipids, and carbohydrates, so it has the potential of becoming a biorefinery raw material.
References
Hadiyanto, Widayat, W. and Kumoro, A. C. 2012. Potency of microalgae as biodiesel source in Indonesia. International Journal Renewable Energy Development. 1(1): 23-27. DOI: 10.14710/IJRED.1.1.23-27
de Araujo, F. O., Giudici, R. and de Sousa, J. J. M. S. 2019. Cultivation of microalgae Chlorella pyrenoidosa using the processes of biotechnology. Electronic Journal Science Collection. 2: 1-11. DOI: 10.25248/REAC.E121.2019
Pacheco, M. M., Hoelts, M., Moraes, M. S. A. and Schneider, R. C. S. 2015. Microalgae: cultivation techniques and wastewater phycoremediation. Journal Environmental Science Health. 50(6): 573-589. DOI : 10.1080/10934529.2015.994951
Safi, C., Zebib, B., Merah, O., Pontalier, P-Y. and Vaca-Garcia, C. 2014. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable Sustainable Energy Review. 35: 265-278. DOI : 10.1016/J.RSER.2014.04.007
Ducut, M. R. D., Villagracia, A. R., Corpuz, J., Arboleda, N. B., David, M. Y. 2014. Molecular dynamics study on the effects of varying temperature and pressure on phosphatidylcholine lipids for microalgae drying. 7th IEEE International Conference Humanoid, Nanotechnology, Information Technology Communication and Control, Environment and Management (HNICEM), 12-16 November, Philippines. DOI: 10.1109/HNICEM.2014.7016255
Yeh, K-L. and Jo-Shu, C. 2012. Effect of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresource Technology. 105: 120-127. DOI: 10.1016/J.BIORTECH.2011.11.103
Rodrigues, M. A. and Bon, E. P. S. 2011. Evaluation of Chlorella (Chlorophyta) as source of fermentable sugars via cell wall enzymatic hydrolysis. Enzyme Research. 405603: 1-5. DOI: 10.4061/2011/405603
Megawati, Sediawan, W. B., Sulistyo, H. and Hidayat, M. 2015. Sulfuric acid hydrolysis of various lignocellulosic materials and its mixture in ethanol production. Biofuels. 5: 331-340. DOI: 10.1080/17597269.2015.1110774
Chen, C., Zhao, X., Yen, H., Ho, S., Cheng, C., Lee, D., Bai, F. and Chang, J. 2013. Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal. 78: 1-10. DO: 10.1016/J.BEJ.2013.03.006
Singh, H., Varanasi, J. L., Banerjee, S. and Das, D. 2019. Production of carbohydrate enrich microalgal biomass as a bioenergy feedstock. Energy. 188(116039): 1-14. DOI: 10.1016/J.ENERGY.2019.116039
Megawati, Damayanti, A., Putri, R. D. A., Pradnya, I. N., Yahya, H. F. and Arnan, N.K. 2020. Drying Characteristics of Chlorella pyrenoidosa Using Oven and its Evaluation for BioEthanol Production. Materials Science Forum. 1007: 1-5. DOI: 10.4028/www.scientific.net/MSF.1007.1
Culaba, A. B., Ubando, A. T., Ching, P. M. L., Chen, W-H. and Chang, J-S. 2020. Biofuel from microalgae: Sustainable pathways. Sustainability. 12(8009). DOI: 10.3390/su12198009
Ho, S-H., Huang, S-W., Chen, C-Y., Hasunuma, T., Kondo, A. and Changa, J-S. 2013. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresource Technology. 135: 191-198. DOI: 10.1016/j.biortech.2012.10.015
Jambo, S.A., Abdulla, R., Mohd Azhar, S. H., Marbawi, H. G., Jualang, A. and Ravindra, P. 2016. A review on third generation bioethanol feedstock. Renewable Sustainable Energy Review. 65(C): 756-769. DOI: 10.1016/J.RSER.2016.07.064
Niphadkar, S., Bagade, P. and Ahmed, S. 2017. Bioethanol production: insight into past, present and future perspectives. Biofuels. 9(2): 229-238. DOI: 10.1080/17597269.2017.1334338
Pancha, I., Chokshi, K. and Mishra, S. 2019. Industrial wastewater-based microalgal biorefinery: a dual strategy to remediate waste and produce microalgal bioproducts. In Application of microalgae in wastewater treatment. Gupta, S. and Bux, F. eds.: Springer, Cham, Switzerland. 173-193. DOI: 10.1007/978-3-030-13909-4_8
Marques, S.S., Isabel, Nascimento, Andrade, I. de Almeida, Fernando, P., Chinalia and Alexandre, F. 2013. Growth of Chlorella vulgaris on sugarcane vinasse: the effect of anaerobic digestion pretreatment. Applied Biochemistry and Biotechnology. 171: 1933-1943. DOI: 10.1007/S12010-013-0481-Y
Dos Santos, R. R., Araújo, O. de Q. F., de Medeiros, J. L. and Chaloub, R. M. 2016. Cultivation of Spirulina maxima in medium supplemented with sugarcane vinasse. Bioresource Technology. 204: 38-48. DOI: 10.1016/J.BIORTECH.2015.12.077
Kendirlioglu, G. and Cetin, A. K. 2009. Effect of different wave lengths of light on growth, pigmen content and protein amount of Chlorella vulgaris. Fresenius Environmental Bulletin. 26(12A): 7974-7980.
Gunawan, T. J., Ikhwan, Y., Restuhadi, F. and Pato, U. 2018. Effect of light Intensity and Photoperiod on Growth of Chlorella pyrenoidosa and CO2 Biofixation. E3S Web Conference. 31(03003): 1-7. DOI: 10.1051/E3SCONF/20183103003
Tang, D., Han, W. Li, P., Miao, X. and Zhong, J. 2011. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology. 102: 3071-3076. DOI: 10.1016/J.BIORTECH.2015.10.095
Sachdeva, N., Kumar, G. D., Gupta, R. P., Mathur, A. S., Manikandan, B., Basu, B. and Tuli, D. K. 2016. Kinetic modeling of growth and lipid body induction in Chlorella pyrenoidosa under heterotrophic conditions. Bioresource Technology. 218: 934-943. DOI: 10.1016/J.BIORTECH.2016.07.063
Guillard, R. R. L. 1975. Culture of phytoplankton for feeding marine invertebrates. In Culture of marine invertebrate animals. Smith, W. L., Chanley, M. H. ed(s).: Plenum Press, New York, 29-60. DOI: 10.1007/978-1-4615-8714-9_3
Ong, S., Kao, C. Y., Chiu, S. Y., Tsai, M. T. and Lin, C. S. 2010. Characterization of the thermal-tolerant mutants of Chlorella sp. with high growth rate and application in outdoor photobioreactor cultivation. Bioresource Technology. 101: 2880-2883. DOI: 10.1016/J.BIORTECH.2009.10.007
Kurnia, D., Asri, R., Dinata, D. I. and Nurachman, Z. 2018. Fatty acid analysis of marine microalgae Chlorella sp. in modified medium used Gas Chromatography-Mass Spectrometry (GC-MS). Journal Pharmacopolium. 1: 1-8. DOI: 10.36465/jop.v1i1.389
Santana, H., Cereijo, C. R., Teles, V. C., Nascimento, R. C., Fernandes, M. S., Brunale, P., Campanha, R. C., Soares, I. P., Silva, F. C. P., Sabaini, P. S., Siqueira, F. G. and Brasi, B. S. A. F. Microalgae cultivation in sugarcane vinasse: Selection, growth and biochemical characterization. Bioresource Technology. 228: 133-140. DOI: 10.1016/j.biortech.2016.12.075
Takahashi, T. 2018. Application of automated cell counter with a chlorophyll detector in routine management of microalgae. Scientific Reports. 8(1): 1-12. DOI: 10.1038/S41598-018-23311-8
Ribeiro, D. M., Zanetti, G. T., Julião, M. H. M., Masetto, T. E., Gelinski, J. M. L. N. and Fonseca, G. G. 2019 Effect of different culture media on growth of Chlorella sorokiniana and the influence of microalgal effluents on the germination of lettuce seed. Journal Applied Biology Biotechnology. 7 (01): 6-10. DO: 10.7324/JABB.2019.70102
Asuthkar, M., Gunti, Y., Rao, S. R., Rao, C. S. and Yadavalli, R. 2016. Effect of different wavelengths of light on the growth of Chlorella pyrenoidosa. International Journal Pharmaceutical Sciences Research. 7 (2): 847-851. DOI: 10.13040/IJPSR.0975-8232.7(2).847-51
Domenighini, A. and Giordano, M. 2009. Fourier transform infrared spectroscopy of microalgae as a novel tool for biodiversity studies, species identification, and the assessment of water quality. Journal of Phycology. 45(2): 522-531. DOI: 10.1111/J.1529-8817.2009.00662.X
Xin, H. and Yu, P. 2013. Using ATR-FT/IR to detect carbohydrate-related molecular structure features of carinata meal and their in situ residues of ruminal fermentation in comparison with canola meal. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 114: 599-606. DOI: 10.1016/J.SAA.2013.05.056
Ozer, T., Yalcin, D., Erkaya, A. and Udoh, A. U. 2016. Identification and characterization of some species of Cyanobacteria, Chlorophyta and Bacillariophyta using Fourier-Transform Infrared (FTIR) Spectroscopy. IOSR Journal Pharmacy Biological Science. 11(6): 22-27. DOI: 10.9790/3008-1106022027
Wagner, H., Liu, Z., Langner, U., Stehfest, K. and Wilhelm, C. 2010. The Use of FTIR spectroscopy to assess quantitative changes in the biochemical composition of microalgae. Journal Biophoton. 3(8-9): 557-566. DOI: 10.1002/JBIO.201000019
Villagracia, A. R. C., Mayol, A. P., Ubando, A. T., Biona, J. B. M. M., Arboleda, N. B., David, M. Y., Tumlos, R. B., Lee, H., Lin, O. H. and Espiritu, R.A. 2016. Microwave drying characteristics of microalgae (Chlorella vulgaris) for biofuel production. Clean Technologies Environmental Policy. 18: 2441-2451. DOI: 10.1007/S10098-016-1169-0
Bleakley, S. and Hayes, M. 2017. Algal proteins: extraction, application, and challenges concerning production. Foods. 6(5): 33. DOI: 10.3390/FOODS6050033
Ashokhumar, V., Chen, W-H. Ngamcharussrivichai, C., Agila, E. and Ani, F. N. 2019. Potential of sustainable bioenergy production from Synechocystis sp. cultivated in wastewater at large scale–A low cost biorefinery approach. Energy Conversion Management. 186: 188-199. DOI: 10.1016/J.ENCONMAN.2019.02.056
Vanthoor-Koopmans, M., Wijffels, R. H., Barbosa, M.J. and Eppink, M.H. 2013. Biorefinery of microalgae for food and fuel. Bioresource Technology. 135: 142-149. DOI: 10.1016/J.BIORTECH.2012.10.135
Şerbetçioğlu Sert, B.. İnan, B. and Özçimen, D. 2018. Effect of chemical pre-treatments on bioethanol production from Chlorella minutissima. Acta Chimica slovenica. 65(1): 160-165. DOI: 10.17344/ACSI.2017.3728
Kawaroe, M., Hwangbo, J., Augustine, D. and Putra, H.A. 2015. Comparison of density, specific growth rate, biomass weight, and doubling time of microalgae Nannochloropsis sp. cultivated in open raceway pond and photobioreactor. AACL Bioflux. 8(5): 740-750. http://www.bioflux.com.ro/docs/2015.740-750.pdf
Lim, D. K. Y., Garg, S., Timmins, M., Zhang, E. S. B., Thomas-Hall, S. R., Schuhmann, H., Li, Y. and Schenk, P. M. 2012. Isolation and evaluation of oil-producing microalgae from subtropical coastal and brackish waters. PLOS ONE. 7(7): e40751. DOI: 10.1371/JOURNAL.PONE.0040751