MANIPULATING MEMBRANE HYDROPHOBICITY BY INTEGRATING POLYTHYLENE-COATED FUME SILICA IN PVDF MEMBRANE

Authors

  • Pei Thing Chang School of Chemical Engineering, Unversiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia
  • Sarvveswaran Paranthaman School of Chemical Engineering, Unversiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia
  • Aishah Rosli School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Siew Chun Low School of Chemical Engineering, Unversiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia

DOI:

https://doi.org/10.11113/aej.v12.17336

Keywords:

CO2 removal, Hydrophobic, Membrane gas absorption; Silica coating, LDPE

Abstract

Membrane gas absorption (MGA) as an emerging technology exhibits superior advantages in comparison to conventional carbon dioxide (CO2) absorption processes. However, the decrease in membrane flux, induced by membrane wetting is a significant issue to be pondered upon. Thus, fabrication of an anti-wetting composite membrane is essential to retain and sustain the MGA performance. In this work, silica nanoparticles (SiNPs) is first coated with hydrophobic low-density polyethylene (LDPE). Then, integrating LDPE-HMDS/SiNPs fillers into the polyvinylidene fluoride (PVDF) matrix to increase its hydrophobicity. The incorporation of LDPE-coated silica into PVDF polymer enhanced the contact angle values from 71.8° to 111.8°, indicates the improvement of membrane anti-wetting ability. Despite the similar finger-like layer laid on top of the sponge-like structure for pristine and composite membranes, the incorporation of LDPE-HMDS/SiNPs has reduced in the length ratio of finger-like to sponge-like layer. The changed in the membrane morphology induced higher membrane hydrophobicity which prevent membrane from getting wet easily especially in long term of operation. In addition, EDX surface mapping and lining profiles clearly proved that the LDPE-HMDS/SiNPs were distributed evenly in the composite membranes indicates the good interfacial compatibility between PVDF polymer and LDPE-coated silica. In term of CO2 absorption flux, the embedment of LDPE-HMDS/SiNPs in PVDF polymer matrix demonstrated 2.4x10-3 mol/m2.s which was 2 times higher than that of the pristine membrane. This means the incorporation of LDPE-HMDS/SiNPs into the PVDF membrane has still played a pivotal role in overcoming membrane wetting drawbacks when in contact with the liquid absorbents.

References

Wu, X., Zhao, B., Wang, L., Zhang, Z., Li, J., He, X. Zhang, H., Zhao, X., and Wang, H. 2018. Superhydrophobic PVDF membrane induced by hydrophobic SiO2 nanoparticles and its use for CO2 absorption. Separation and Purification Technology. 190: 108–116. DOI: https://doi.org/10.1016/j.seppur.2017.07.076

Lin, Y., Xu, Y., Loh, C. H., and Wang, R. 2018. Development of robust fluorinated TiO2/PVDF composite hollow fiber membrane for CO2 capture in gas-liquid membrane contactor. Applied Surface Science. 436: 670–681. DOI: https://doi.org/10.1016/j.apsusc.2017.11.263

Chang, P. T., Ng, Q. H., Ahmad, A. L., and Low, S. C. 2022. A critical review on the techno-economic analysis of membrane gas absorption for CO2 capture. Chemical Engineering Communications. DOI: https://doi.org/10.1080/00986445.2021.1977926

Toh, M. J., Oh, P. C., Chew, T. L., and Ahmad, A. L. 2020. Preparation of polydimethylsiloxane-SiO2/PVDF-HFP mixed matrix membrane of enhanced wetting resistance for membrane gas absorption. Separation and Purification Technology. 244: 116543. DOI: https://doi.org/10.1016/j.seppur.2020.116543

Chang, P. T., Baharuddin, I. M., Ng, Q. H., Teoh, G. H., Ahmad, A. L., and Low, S. C. 2022. Creating membrane-air-liquid interface through a rough hierarchy structure for membrane gas absorption to remove CO2. International Journal of Energy Research. DOI: https://doi.org/10.1002/er.7500

Zhao, S., Feron, P. H. M., Deng, L., Favre, E., Chabanon, E., Yan, S., Hou, J., Chen, V., and Qi, Hi. 2016. Status and progress of membrane contactors in post-combustion carbon capture: A state-of-the-art review of new developments. Journal of Membrane Science. 511:180–206. DOI: https://doi.org/10.1016/j.memsci.2016.03.051

Siagian, U. W. R., Raksajati, A., Himma, N. F., Khoiruddin, K., and Wenten, I. G. 2019. Membrane-based carbon capture technologies: Membrane gas separation vs. membrane contactor. Journal of Natural Gas Science and Engineering. 67:172–195. DOI: https://doi.org/10.1016/j.jngse.2019.04.008

Himma, N. F., Wardani, A. K., and Wenten, I. G. 2017. The effects of non-solvent on surface morphology and hydrophobicity of dip-coated polypropylene membrane. Materials Research Express. 4(5): 054001. DOI: https://doi.org/10.1088/2053-1591/aa6ee0

Rosli, A., Ahmad, A. L., and Low, S. C. 2020. Functionalization of silica nanoparticles to reduce membrane swelling in CO2 absorption process. Journal of Chemical Technology & Biotechnology. 95(4): 1073–1084.

DOI: https://doi.org/10.1002/jctb.6289

Yan, S., Fang, M., Wang, Z., Xue, J., and Luo, Z. 2011. Economic analysis of CO2 separation from coal-fired flue gas by chemical absorption and membrane absorption technologies in China. Energy Procedia. 4: 1878–1885.DOI: https://doi.org/10.1016/j.egypro.2011.02.066

Talavari, A., Ghanavati, B., Azimi, A., and Sayyahi, S. 2020. Preparation and characterization of PVDF-filled MWCNT hollow fiber mixed matrix membranes for gas absorption by Al2O3 nanofluid absorbent via gas–liquid membrane contactor. Chemical Engineering Research and Design. 156: 478–494.DOI: https://doi.org/10.1016/j.cherd.2020.01.017

Fashandi, H., Ghodsi, A., Saghafi, R., and Zarrebini, M. 2016. CO2 absorption using gas-liquid membrane contactors made of highly porous poly(vinyl chloride) hollow fiber membranes. International Journal of Greenhouse Gas Control. 52: 13–23. DOI: https://doi.org/10.1016/j.ijggc.2016.06.010

Wu, X., Zhao, B., Wang, L., Zhang, Z., Zhang, H., Zhao, X., and Guo, X. 2016. Hydrophobic PVDF/graphene hybrid membrane for CO2 absorption in membrane contactor. Journal of Membrane Science. 520: 120–129. DOI: https://doi.org/10.1016/j.memsci.2016.07.025

Chen, Z., Shen, Q., Gong, H., and Du, M. 2020. Preparation of a novel dual-layer polyvinylidene fluoride hollow fiber composite membrane with hydrophobic inner layer for carbon dioxide absorption in a membrane contactor. Separation and Purification Technology. 248: 117045. DOI: https://doi.org/10.1016/j.seppur.2020.117045

Lin, S-H., Tung, K-L., Chen, W-J., and Chang, H-W. 2009. Absorption of carbon dioxide by mixed piperazine–alkanolamine absorbent in a plasma-modified polypropylene hollow fiber contactor. Journal of Membrane Science. 333(1-2): 30–37.DOI: https://doi.org/10.1016/j.memsci.2009.01.039

Lin, Y-F., Ye, Q., Hsu, S-H., and Chung, T-W. 2016. Reusable fluorocarbon-modified electrospun PDMS/PVDF nanofibrous membranes with excellent CO2 absorption performance. Chemical Engineering Journal. 284: 888–895.DOI: https://doi.org/10.1016/j.cej.2015.09.063

Rosli, A., Ahmad, A. L., and Low, S. C. 2019. Anti-wetting polyvinylidene fluoride membrane incorporated with hydrophobic polyethylene-functionalized-silica to improve CO2 removal in membrane gas absorption. Separation and Purification Technology. 221: 275–285. DOI: https://doi.org/10.1016/j.seppur.2019.03.094

Nthunya, L. N., Gutierrez, L., Verliefde, A. R., and Mhlanga, S. D. 2019. Enhanced flux in direct contact membrane distillation using superhydrophobic PVDF nanofibre membranes embedded with organically modified SiO2 nanoparticles. Journal of Chemical Technology & Biotechnology. 94(9): 2826–2837. DOI: https://doi.org/10.1002/jctb.6104

Sun, H., Xu, Y., Zhou, Y., Gao, W., Zhao, H., and Wang, W. 2017. Preparation of superhydrophobic nanocomposite fiber membranes by electrospinning poly(vinylidene fluoride)/silane coupling agent modified SiO2 nanoparticles. Journal of Applied Polymer Science. 134(13): 44501. DOI: https://doi.org/10.1002/app.44501

Gharehbash, N., and Shakeri, A. 2015. Preparation and thermal and physical properties of nano-silica modified and unmodified. Oriental Journal of Chemistry. 31: 207–212. DOI: https://doi.org/10.13005/ojc/31.Special-Issue1.25

Silverio, V., Canane, P. A. G., and Cardoso, S. 2019. Surface wettability and stability of chemically modified silicon, glass and polymeric surfaces via room temperature chemical vapor deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 570: 210–217. DOI: https://doi.org/10.1016/j.colsurfa.2019.03.032

Rosli, A., Ahmad, A. L., and Low, S. C. 2020. Enhancing membrane hydrophobicity using silica end-capped with organosilicon for CO2 absorption in membrane contactor. Separation and Purification Technology. 251: 117429. DOI: https://doi.org/10.1016/j.seppur.2020.117429

Tan, P. C., Ooi, B. S., Ahmad, A. L., and Low, S. C. 2019. Formation of a defect-free polyimide/zeolitic imidazolate framework-8 composite membrane for gas separation: in-depth analysis of organic–inorganic compatibility. Journal of Chemical Technology & Biotechnology. 94(9): 2792–2804. DOI: https://doi.org/10.1002/jctb.5908

Bai, H., Zhou, Y., and Zhang, L. 2015. Morphology and Mechanical Properties of a New Nanocrystalline Cellulose/Polysulfone Composite Membrane. Advances in Polymer Technology. 34(1): 21471. DOI: https://doi.org/10.1002/adv.21471

Efome, J. E., Baghbanzadeh, M., Rana, D., Matsuura, T., and Lan, C. Q. 2015. Effects of superhydrophobic SiO2 nanoparticles on the performance of PVDF flat sheet membranes for vacuum membrane distillation. Desalination. 373: 47–57. DOI: https://doi.org/10.1016/j.desal.2015.07.002

Luo, Z., Li, Y., Duan, C., and Wang, B. 2018. Fabrication of a superhydrophobic mesh based on PDMS/SiO2 nanoparticles/PVDF microparticles/KH-550 by one-step dip-coating method. RCS Advances. 8(29): 16251–16259. DOI: https://doi.org/10.1039/C8RA03262A

Mistry, R. J., Saxena, M., Ray, P., and Singh, P. S. 2018. Octadecyl-silica—PVDF membrane of superior MD desalination performance. Journal of Applied Polymer Science. 135(13): 46043. DOI: https://doi.org/10.1002/app.46043

Barati Darband, Gh., Aliofkhazraei, M., Khorsand, S., Sokhanvar, S., and Kaboli, A. 2020. Science and Engineering of Superhydrophobic Surfaces: Review of Corrosion Resistance, Chemical and Mechanical Stability. Arabian Journal of Chemistry. 13(1): 1763–1802. DOI: https://doi.org/10.1016/j.arabjc.2018.01.013

Teoh, G. H., Chin, J. Y., Ooi, B. S., Jawad, Z. A., Leow, H. T. L., and Low, S. C. 2020. Superhydrophobic membrane with hierarchically 3D-microtexture to treat saline water by deploying membrane distillation. Journal of Water Process Engineering. 37: 101528. DOI: https://doi.org/10.1016/j.jwpe.2020.101528

Rezaei, M., Ismail, A. F., Hashemifard, S. A., and Matsuura, T. 2014. Preparation and characterization of PVDF-montmorillonite mixed matrix hollow fiber membrane for gas–liquid contacting process. Chemical Engineering Research and Design. 92(11): 2449–2460. DOI: https://doi.org/10.1016/j.cherd.2014.02.019

Downloads

Published

2022-02-28

Issue

Section

Articles

How to Cite

MANIPULATING MEMBRANE HYDROPHOBICITY BY INTEGRATING POLYTHYLENE-COATED FUME SILICA IN PVDF MEMBRANE. (2022). ASEAN Engineering Journal, 12(1), 157-164. https://doi.org/10.11113/aej.v12.17336