• Zaid Alhadrawi Department of Electrical Engineering, Faculty of Engineering, University of Kufa, Iraq
  • M.N. Abdullah Green and Sustainable Energy (GSEnergy) Focus Group, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
  • Hazlie Mokhlis Department of Electrical Engineering, Faculty of Engineering, University Malaya, Kuala Lumpur, Malaysia




Distribution system protection, Microgrid protection, Distributed generation, Distributed energy resources, Renewable energy sources, Differential relay.


Although the differential protection schemes consider as one of the effective types to protect the microgrid, this method may result in inaccurate performance because of the loss of communication link connecting the two ends of the line or other reasons. Therefore, the use of backup protection can lead to more accurate results. In this paper, self-backup protection is presented to cover the mal-operation of main protection. In this scheme, a new R-ratio method is defined based on the summation of the three-phase currents and the minimum of the three-phase voltages to overcome the low fault current during the islanded microgrid.  The proposed scheme can detect all fault types during both operation modes of microgrid, grid-connected and islanded for radial and loop configuration. The validation of the proposed scheme is performed using PSCAD/EMTDC software. The simulation results proved that the proposed scheme could provide adequate protection against various fault types in grid-connected and islanded operation modes for a radial and loop configuration.


Wang, B., & Jing, L. 2020. A Protection Method for Inverter-based Microgrid Using Current-only Polarity Comparison. Journal of Modern Power Systems and Clean Energy, 8(3): 446–453. doi: 10.35833/MPCE.2018.000722

Zarei, S. F., & Parniani, M. 2017. A Comprehensive Digital Protection Scheme for Low-Voltage Microgrids Inverter-Based and Conventional Distributed Generations. IEEE Transactions on Power Delivery, 32(1): 441–452. doi: 10.1109/TPWRD.2016.2566264

Patnaik, B., Mishra, M., Bansal, R. C., & Jena, R. K. 2020. AC microgrid protection – A review: Current and future prospective. Applied Energy, 271(May): 115210. doi: 10.1016/j.apenergy.2020.115210

Guo, W. M., Mu, L. H., & Zhang, X. 2017. Fault Models of Inverter-Interfaced Distributed Generators Within a Low-Voltage Microgrid. IEEE Transactions on Power Delivery, 32(1): 453–461. doi: 10.1109/TPWRD.2016.2541344

Hosseini, S. A., Abyaneh, H. A., Sadeghi, S. H. H., Razavi, F., & Nasiri, A. 2016. An overview of microgrid protection methods and the factors involved. Renewable and Sustainable Energy Reviews, 64: 174–186. doi: 10.1016/J.RSER.2016.05.089

Brearley, B. J., & Prabu, R. R. 2017. A review on issues and approaches for microgrid protection. Renewable and Sustainable Energy Reviews, 67: 988–997. doi: 10.1016/j.rser.2016.09.047

Mirsaeidi, S., Mat Said, D., Wazir Mustafa, M., Hafiz Habibuddin, M., & Ghaffari, K. 2014b. Progress and problems in micro-grid protection schemes. Renewable and Sustainable Energy Reviews, 37: 834–839. doi: 10.1016/j.rser.2014.05.044

Memon, A. A., & Kauhaniemi, K. 2015. A critical review of AC Microgrid protection issues and available solutions. Electric Power Systems Research, 129, 23–31. doi: 10.1016/j.epsr.2015.07.006

Gopalan, S. A., Sreeram, V., & Iu, H. H. C. 2014. A review of coordination strategies and protection schemes for microgrids. Renewable and Sustainable Energy Reviews, 32: 222–228. doi: 10.1016/j.rser.2014.01.037

Manditereza, P. T., & Bansal, R. C. 2020. Protection of microgrids using voltage-based power differential and sensitivity analysis. International Journal of Electrical Power and Energy Systems, 118(August 2019): 105756. doi: 10.1016/j.ijepes.2019.105756

Han, B., Li, H., Wang, G., Zeng, D., & Liang, Y. 2018. A Virtual Multi-Terminal Current Differential Protection Scheme for Distribution Networks with Inverter-Interfaced Distributed Generators. IEEE Transactions on Smart Grid, 9(5): 5418–5431. doi: 10.1109/TSG.2017.2749450

Horowitz, S. H., Phadke, A. G., & Niemira, J. K. 2013. Power System Relaying (4th ed.). John Wiley and Sons Ltd. Retrieved from https://www.wiley.com/en-us/Power+System+Relaying%2C+4th+Edition-p-9781118662007

Mirsaeidi, S., Mat Said, D., Wazir Mustafa, M., Hafiz Habibuddin, M., & Ghaffari, K. 2014a. An analytical literature review of the available techniques for the protection of micro-grids. International Journal of Electrical Power and Energy Systems, 58: 300–306. doi: 10.1016/j.ijepes.2014.01.032

Alhadrawi, Z., Abdullah, M. N., & Mokhlis, H. 2020. An adjustable differential protection scheme for microgrids with inverter-based distributed generation. International Journal of Advanced Trends in Computer Science and Engineering, 9(1 Special Issue 4): 664–672. doi: 10.30534/ijatcse/2020/9391.42020

Abdulwahid, A. H., & Wang, S. 2016. A new differential protection scheme for microgrid using Hilbert space based power setting and fuzzy decision processes. Proceedings of the 2016 IEEE 11th Conference on Industrial Electronics and Applications, ICIEA 2016, 6–11. doi: 10.1109/ICIEA.2016.7603542

Zeineldin, H. H., El-Saadany, E. F., & Salama, M. M. A. 2006. Distributed generation micro-grid operation: Control and protection. Power Systems Conference 2006: Advanced Metering, Protection, Control, Communication and Distributed Resources, PSC, 105–111. doi: 10.1109/PSAMP.2006.285379

Conti, S., Raffa, L., & Vagliasindi, U. 2009. Innovative solutions for protection schemes in autonomous MV micro-grids. 2009 International Conference on Clean Electrical Power, ICCEP 2009, 647–654. doi: 10.1109/ICCEP.2009.5211985

Gao, H., Li, J., & Xu, B. 2017. Principle and implementation of current differential protection in distribution networks with high penetration of DGs. IEEE Transactions on Power Delivery, 32(1): 565–574. doi: 10.1109/TPWRD.2016.2628777

Bhatraj, A., Nayak, P. K., & Biswas, S. 2020. The Differential Protection Scheme for Microgrid Using S-Transform. SSRN Electronic Journal, 1–8. doi: 10.2139/ssrn.3575414

Prasai, A., Du, Y., Paquette, A., Buck, E., Harley, R., & Divan, D. 2010. Protection of meshed microgrids with communication overlay. 2010 IEEE Energy Conversion Congress and Exposition, ECCE 2010 - Proceedings, 64–71. doi: 10.1109/ECCE.2010.5618074

Dewadasa, M., Ghosh, A., & Ledwich, G. 2011. Protection of microgrids using differential relays. 2011 21st Australasian Universities Power Engineering Conference, AUPEC 2011, 1–6.

Mishra, M., & Rout, P. K. 2018. Detection and classification of micro-grid faults based on HHT and machine learning techniques. IET Generation, Transmission and Distribution, 12(2): 388–397. doi: 10.1049/iet-gtd.2017.0502

Protective Relays Their Theory and Practice (2nd ed.). (n.d.). Springer. Retrieved from https://www.springer.com/gp/book/9780412153808

Bukhari, Syed Basit Ali, Muhammad Saeed Uz Zaman, et al. 2017, “A Protection Scheme for Microgrid with Multiple Distributed Generations Using Superimposed Reactive Energy.” International Journal of Electrical Power and Energy Systems, 92: 156–66, https://doi.org/10.1016/j.ijepes.2017.05.003.

Mirsaeidi, S., Said, D. M., Mustafa, M. W., Habibuddin, M. H., & Ghaffari, K. 2016. A Protection Strategy for Micro-Grids Based on Positive-Sequence Impedance. Distributed Generation and Alternative Energy Journal, 31(3): 7–32. doi: 10.1080/21563306.2016.11744002

Mirsaeidi, S., Said, D. M., Mustafa, M. W., & Habibuddin, M. H. 2015. A protection strategy for micro-grids based on positive-sequence component. IET Renewable Power Generation, 9(6): 600–609. doi: 10.1049/iet-rpg.2014.0255

Bukhari, S. B. A., Haider, R., Saeed Uz Zaman, M., Oh, Y. S., Cho, G. J., & Kim, C. H. 2018. An interval type-2 fuzzy logic based strategy for microgrid protection. International Journal of Electrical Power and Energy Systems, 98(December 2017): 209–218. doi: 10.1016/j.ijepes.2017.11.045




How to Cite

Alhadrawi, Z., Abdullah, M. ., & Mokhlis, H. . (2022). A NEW METHOD TO ENHANCE THE DIFFERENTIAL PROTECTION OF THE MICROGRID BY SELF-BACKUP PROTECTION. ASEAN Engineering Journal, 12(3), 19–25. https://doi.org/10.11113/aej.v12.17559