EFFECTS OF ULTRASOUND VIBRATION ON MICROSTRUCTURE SUBMERGED ARC WELDING
DOI:
https://doi.org/10.11113/aej.v12.17858Keywords:
Ultrasonic vibration, Arc weld structure, Grain size, Frequency of 20kHz, Mechanical properties.Abstract
The microstructure of the weld influences its quality, in which the grain size is one of the most important parameters affecting the mechanical properties of the weld. To change the grain size, the cooling process of the weld zone must be carefully controlled. Customarily, the weld zone is cooled down without post-treatment after the welding process, so the microstructure of the weld is similar to that of the casting. In this study, ultrasonic vibrations are used in the welding process from the beginning of the welding process until the part is completely cooled. Using the ultrasonic waves with frequency of 20kHz, power of 1500W, the researchers analyzed the weld microstructure, comparing the welds with and without ultrasonic vibrations. The results show that when ultrasonic vibrations are utilized, the grain size is changed and the mechanical properties are significantly improved.
References
Hughes, S. E. (Ed.). 2009. A quick guide to welding and weld inspection. Elsevier Science, Burlington. DOI: https://www.elsevier.com/books/a-quick-guide-to-welding-and-weld-inspection/hughes/978-1-84569-641-2
Kumar, S., Wu, C. S., Padhy, G. K., & Ding, W. 2017. Application of ultrasonic vibrations in welding and metal processing: A status review. Journal of manufacturing processes, 26, 295-322. DOI: https://doi.org/10.1016/j.jmapro.2017.02.027
Sun, Q. J., Lin, S. B., Yang, C. L., & Zhao, G. Q. 2009. Penetration increase of AISI 304 using ultrasonic assisted tungsten inert gas welding. Science and Technology of Welding and Joining, 14(8), 765-767. DOI: https://doi.org/10.1179/136217109X12505932584772
Dai, W. L. 2003. Effects of high-intensity ultrasonic-wave emission on the weldability of aluminum alloy 7075-T6. Materials Letters, 57(16-17), 2447-2454. DOI: https://doi.org/10.1016/S0167-577X(02)01262-4
Dong, H., Yang, L., Dong, C., & Kou, S. 2012. Improving arc joining of Al to steel and Al to stainless steel. Materials Science and Engineering: A, 534, 424-435. DOI: https://doi.org/10.1016/j.msea.2011.11.090
Cui, Y., Xu, C. L., & Han, Q. 2006. Effect of ultrasonic vibration on unmixed zone formation. Scripta materialia, 55(11), 975-978. DOI: https://doi.org/10.1016/j.scriptamat.2006.08.035
Chen, X., Shen, Z., Wang, J., Chen, J., Lei, Y., & Huang, Q. 2012. Effects of an ultrasonically excited TIG arc on CLAM steel weld joints. The International Journal of Advanced Manufacturing Technology, 60(5), 537-544. DOI: https://doi.org/10.1007/s00170-011-3611-0
Kolubaev, A. V., Sizova, O. V., Fortuna, S. V., Vorontsov, A. V., Ivanov, A. N., & Kolubaev, E. A. 2020. Weld structure of low-carbon structural steel formed by ultrasonic-assisted laser welding. Journal of Constructional Steel Research, 172, 106190. DOI: https://doi.org/10.1016/j.jcsr.2020.106190
Bhadeshia, H., & Honeycombe, R. 2017. Steels: microstructure and properties. Butterworth-Heinemann. DOI: https://www.elsevier.com/books/steels-microstructure-and-properties/bhadeshia/978-0-08-100270-4
Jose, M. J., Kumar, S. S., & Sharma, A. 2016. Vibration assisted welding processes and their influence on quality of welds. Science and Technology of Welding and Joining, 21(4), 243-258. DOI: https://doi.org/10.1179/1362171815Y.0000000088
Lan, H. X., Gong, X. F., Zhang, S. F., Wang, L., Wang, B., & Nie, L. P. 2020. Ultrasonic vibration assisted tungsten inert gas welding of dissimilar metals 316L and L415. International Journal of Minerals, Metallurgy and Materials, 27(7), 943-953. DOI: https://doi.org/10.1007/s12613-019-1960-0
Wu, K., Yuan, X., Li, T., Wang, H., Xu, C., & Luo, J. 2019. Effect of ultrasonic vibration on TIG welding–brazing joining of aluminum alloy to steel. Journal of Materials Processing Technology, 266, 230-238. DOI: https://doi.org/10.1016/j.jmatprotec.2018.11.003
Krajewski, A., Włosiński, W., Chmielewski, T., & Kołodziejczak, P. 2012. Ultrasonic-vibration assisted arc-welding of aluminum alloys. Bulletin of the Polish Academy of Sciences. Technical Sciences, 60(4), 841-852. DOI: http://dx.doi.org/10.2478/v10175-012-0098-2
da Cunha, T. V., & Bohórquez, C. E. N. 2015. Ultrasound in arc welding: a review. Ultrasonics, 56, 201-209. DOI: https://doi.org/10.1016/j.ultras.2014.10.007
He, L., Wu, M., Li, L., & Hao, H. 2006. Ultrasonic generation by exciting electric arc: A tool for grain refinement in welding process. Applied Physics Letters, 89(13), 131504. DOI: https://doi.org/10.1063/1.2357857
Watanabe, T., Ookawara, S., Seki, S., Yanagisawa, A., & Konuma, S. 2003. The Effect of Ultrasonic Vibration on The Mechanical Properties of Austenitic Stainless Steel Weld. Quarterly Journal of the Japan Welding Society, 21(2), 249-255. DOI: https://doi.org/10.2207/qjjws.21.249
Watanabe, T., Shiroki, M., Yanagisawa, A., & Sasaki, T. 2010. Improvement of mechanical properties of ferritic stainless steel weld metal by ultrasonic vibration. Journal of Materials Processing Technology, 210(12), 1646-1651. DOI: https://doi.org/10.1016/j.jmatprotec.2010.05.015
Cui, Y., Xu, C., & Han, Q. 2007. Microstructure Improvement in Weld Metal under the Ultrasonic Application. Advanced Engineering Materials, 9(3). DOI: https://doi.org/10.1002/adem.200600228
Han, Y., Li, K., Wang, J., Shu, D., & Sun, B. 2005. Influence of high-intensity ultrasound on grain refining performance of Al–5Ti–1B master alloy on aluminium. Materials Science and Engineering: A, 405(1-2), 306-312. DOI: https://doi.org/10.1016/j.msea.2005.06.024
Wang, J. J., & Hong, X. O. 2011. Research on twin-arc TIG welding with ultrasonic excitation and its effect to weld. In Key Engineering Materials (Vol. 450, pp. 300-303). Trans Tech Publications Ltd. DOI: https://doi.org/10.4028/www.scientific.net/KEM.450.300