• Dedi Suryadi Department of Mechanical Engineering, University of Bengkulu, Jl. WR Supratman, Bengkulu, Indonesia
  • Argian Prasetya Department of Mechanical Engineering, University of Bengkulu, Jl. WR Supratman, Bengkulu, Indonesia
  • Novalio Daratha Department of Electrical Engineering, University of Bengkulu, Jl. WR Supratman, Bengkulu, Indonesia
  • Indra Agustian Department of Electrical Engineering, University of Bengkulu, Jl. WR Supratman, Bengkulu, Indonesia




Genetic Algorithm, Seismic Loads, TMD, Vibration Response, Genetic Algorithm, Seismic Loads, Structure, TMD, Vibration Response


A tuned mass damper (TMD) is a system to improve structural performance in reducing vibration response under seismic loads. This study optimizes TMD parameters using a genetic algorithm. In this study, the structure is modeled as a spring-mass system to obtain mathematical equations. Then, those equations are used to estimate vibration due to seismic loads. A genetic algorithm is used to find optimum parameters which correspond to minimum vibrations. The simulation result shows that the genetic algorithm can find values of parameters such as the ratio of mass, stiffness, and damping values ​​which reduces vibrations on the structure. Based on the tests, it is found that the best combination of genetic algorithm parameters to produce the most optimal fitness value is population size 30, generation size 800, crossover probability 0.5, and mutation probability 0.5. Applying the genetic algorithm shows that the optimal parameter ratio values of TMD ​​to reduce the vibration response are 10% mass, 10% stiffness, and 1% damping of mass, stiffness, and damping in the structure. The result of the vibration response analysis shows that the maximum amplitude value of the main structure without TMD is 0.24259 m reduced to 0.034385 m with the addition of TMD. This shows that the TMD successfully reduces vibrations in the main structure with a percentage of 85.94%. Where the TMD manages to dissipate the energy that should only be received by the structure to the TMD itself.


. Zheng, X. W. Li, H. N. Yang, Y. B. Li, G. Huo, L. S. and Liu, Y. 2019. Damage risk assessment of a high-rise building against multihazard of earthquakes and strong wind with recorded data. Engineering Structures. 200 (Dec.): 109697. DOI: 10.1016/j.engstruct.2019.109697.

. Zhang, R. and Li, A. 2021. Experimental study on the performance of damaged precast shear wall structures after base isolation. Engineering Structures. 228 (Aug.): 111553. DOI: 10.1016/j.engstruct.2020.111553.

. Huergo,F. Hern, H. and Patl, C. M. 2019. A continuous-discrete approach for pre-design of flexible-base tall buildings with fluid viscous dampers. Soil Dynamics and Earthquake Engineering. 131 (Nov.): 106042 DOI: 10.1016/j.soildyn.2020.106042.

. Elias, S. and Matsagar, V. 2017. Research developments in vibration control of structures using passive tuned mass dampers. Annual Reviews in Control. 44: 129–156. DOI: 10.1016/j.arcontrol.2017.09.015.

. Teplyshev, V. Mylnik, A. Pushkareva, M. Agakhanov, M. and Burova, O. 2018. Application of tuned mass dampers in high-rise construction. E3S Web of Conferences. 33: 1–6. DOI: 10.1051/e3sconf/20183302016.

. Boccamazzo, A. Carboni, B. Quaranta, G. and Lacarbonara, W. 2019. Seismic effectiveness of hysteretic tuned mass dampers for inelastic structures. Engineering Structures. 216 (Sept.): 110591. DOI: 10.1016/j.engstruct.2020.110591.

. Carmona, J. E. C. Avila, S. M. and Doz, G. 2017. Proposal of a tuned mass damper with friction damping to control excessive floor vibrations. Engineering Structures. 148: 81–100. DOI: 10.1016/j.engstruct.2017.06.022.

. Suryadi, D. Ridlo, M. R. Daratha, N. Agustian, I. 2021. Effect of Tuned Mass Damper (TMD) on Vibration Response for Building Structure Model. Semesta Teknika. 24(2): 84-92. DOI: 10.18196/st.v24i2.12727.

. Christie, M. D. et al. 2019. A variable resonance magnetorheological- fluid-based pendulum tuned mass damper for seismic vibration suppression. Mechanical Systems and Signal Processing. 116: 530– 544. DOI: 10.1016/j.ymssp.2018.07.007.

. Chieh, C. Y. Wong, J. Ling, L. Ling, Y. and Ong, H. 2021. Dynamic response of scaled structure with one liquid tuned mass damper. Case Studies in Construction Materials. 14(Feb.): e00512. DOI: 10.1016/j.cscm.2021.e00512.

. Bernandes, P. L. DeMorais, M. V. G. and Avila, S. 2019. Experimental Study of an Inverted Pendulum Tuned Mass. Proceedings of ABCM International Congress of Mechanical Engineering. 25: 1-7 DOI:10.26678/abcm.cobem2019.cob2019-2383.

. Ghaffarzadeh, H. Younespour, A. and Cheng, S. 2020. Design of a tuned mass damper for damped structures using an orthogonal-function- based equivalent linearization method. Structures. 28 (Aug.): 2605– 2616. DOI: 10.1016/j.istruc.2020.10.069.

. Domizio, M. Ambrosini, D. and Curadelli, O. 2015. Performance of tuned mass damper against structural collapse due to near-fault earthquakes. Journal of Sound and Vibration. 336: 32-45. DOI: I10.1016/j.jsv.2014.10.007.

. Kwag, S. Eem, S. Kwak, J. Lee, H. Oh, J. and Koo, G.-H. 2021. Mitigation of seismic responses of actual nuclear piping by a newly developed tuned mass damper device. Nuclear Engineering and Technology. 53(8): 1–18. DOI: 10.1016/j.net.2021.02.009.

. Suryadi, D. Putra, A. Fauzan, A. and Daratha, N. 2019. Pemodelan Sistem Peredam Struktur dengan Menggunakan Tuned Mass Damper. Proceedings of SENITIA: 47–51.

. Ukritchon, B. Chea, S. & Keawsawasvong, S. 2017. Optimal design of Reinforced Concrete Cantilever Retaining Walls considering the requirement of slope stability. KSCE Journal of Civil Engineering. 21: 2673–2682. DOI: https://doi.org/10.1007/s12205-017-1627-1.

. Khajehzadeh, M. Keawsawasvong, S. Sarir, P. & Khailany, D. 2022. Seismic Analysis of Earth Slope Using a Novel Sequential Hybrid Optimization Algorithm. Periodica Polytechnica Civil Engineering. 66(2): 355-366 DOI: 10.3311/PPci.19356.

. Keawsawasvong, S. & Ukritchon, B. 2016. A Practical Method for the Optimal Design of Continuous Footing Using Ant-Colony Optimization. Acta Geotechnica Slovenica. 13(2): 45-55.

. Khajehzadeh, M. Taha, M. R. Keawsawasvong, S. Mirzaei, H. and Jebeli, M. 2022. An Effective Artificial Intelligence Approach for Slope Stability Evaluation. IEEE Access. 10: 5660-5671. DOI: 10.1109/ACCESS.2022.3141432.

. Subramanian, R. Jyothish, P. V. and Subramanian, A. V., 2020. Genetic Algorithm Based Design Optimization of a Passive Anti-Roll Tank in a Sea Going Vessel. Ocean Engineering. 203 (1): 107216 DOI: 10.1016/j.oceaneng.2020.107216.

. Wang, C. Cui, Z. Yu, H. Chen, K. and Wang, J. 2020. Intelligent optimization design of shell and helically coiled tube heat exchanger based on genetic algorithm. International Journal of Heat and Mass Transfer. 159(9): 120140. DOI: 10.1016/j.ijheatmasstransfer.2020.120140.

. Liu, Y. Jafari, S. and Nikolaidis, T. 2021. Advanced optimization of gas turbine aero-engine transient performance using linkage-learning genetic algorithm: Part I, building blocks detection and optimization in runway. Chinese Journal of Aeronautics. 34(4): 526–539. DOI: 10.1016/j.cja.2020.07.034.

. Febriawati, H. Angraini, W. Ekowati, S. and Astuti, D. 2017. Analisis Manajemen Bencana Gempa Di Rumah Sakit Umum Daerah Dr. M. Yunus Kota Bengkulu. Ilmu Kesehatan Masyarakat. 8(1): 28–33.

. bmkg.go.id. 06 October 2020. Gempa Bumi Terkini. Accessed on 08 October2020. https://www.bmkg.go.id/gempabumi/gempabumi- terkini. bmkg







How to Cite