THEORETICAL ANALYSIS OF SQUARE STRUCTURED PHOTONIC CRYSTAL FIBRE USING THE GOLDEN RATIO

Authors

  • Atta Rahman Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
  • Pg Emeroylariffion Abas Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
  • Abdul Mu'iz Maidi Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
  • Nianyu Zou School of Information Science and Engineering, Dalian Polytechnic University, Dalian, China
  • Feroza Begum Faculty of Integrated Technologies, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam

DOI:

https://doi.org/10.11113/aej.v12.18008

Keywords:

effective area, golden ratio, photonic crystal fibre, chromatic dispersion

Abstract

Square photonic crystal fibre (PCF) is proposed in this study using the principle of the golden ratio; by taking inspiration from nature. Simulations and analyses of the proposed design are used to examine different optical properties. Research findings show that the proposed square photonic crystal fibre exhibits a flattened chromatic dispersion, with a chromatic dispersion value of around 60 ps/(km.nm). At the critical 1.55 mm operating wavelength window, the fibre structure has a low effective area of less than 8 mm2 and confinement loss of less than 10−5 dB/km. These characteristics show that the proposed PCF design is suitable to be used for data communication systems. Subsequently, confinement of light occurs within the core of the proposed PCF at the optimum wavelength of 1.55 μm.

References

Knight, J. C., Birks, T. A., Russell, P. S. J. and de Sandro, J. P. 1998. Properties of Photonic Crystal Fiber and the Effective Index Model. Journal of the Optical Society of America A. 15(3): 748. https://doi.org/10.1364/JOSAA.15.000748.

Begum, F., Zaini, J. H., Petra, I., Namihira, Y. and Zou, N. 2017. Microstructured Fiber for Optical Communications and Medical Applications. Advanced Science Letters. 23(6): 5098–5101. https://doi.org/10.1166/asl.2017.7318.

Wang, Y. Y., Wheeler, N. V., Couny, F., Roberts, P. J. and Benabid, F. 2011. Low Loss Broadband Transmission in Hypocycloid-Core Kagome Hollow-Core Photonic Crystal Fiber. Optic Letters. 36(5): 669. https://doi.org/10.1364/OL.36.000669.

Russell, P. S. J. 2006. Photonic-Crystal Fibers. Journal of Light Technology. 24(12): 4729–4749.

Begum, F., Azad, A. K., Abu Bakar, S., Petra, I., Miyagi, K. and Namihira, Y. 2017. Large Effective Area Square Photonic Crystald Fiber for Optical Communications. Journal of Engineering and Applied Sciences. 12(16): 4016–4021. https://doi.org/10.36478/jeasci.2017.4016.4021.

Begum, F., Azad, A. K., Bakar, S. A., Petra, I., Miyagi, K. and Namihira, Y. 2016. Designing Dispersion Compensating Microstructure Optical Fiber. International Journal of Engineering and Technology. 8(2): 995–1002.

Chen, M., Yang, Q., Li, T., Chen, M. and He, N. 2010. New High Negative Dispersion Photonic Crystal Fiber. Optik. 121(10): 867–871. https://doi.org/10.1016/j.ijleo.2008.09.039.

Liao, J., Sun, J., Qin, Y. and Du, M. 2013. Ultra-Flattened Chromatic Dispersion and Highly Nonlinear Photonic Crystal Fibers with Ultralow Confinement Loss Employing Hybrid Cladding. Optical Fiber Technology. 19(5): 468–475. https://doi.org/10.1016/j.yofte.2013.05.013.

Hasan, M. I., Abdur Razzak, S. M. and Habib, M. S. 2014. Design and Characterization of Highly Birefringent Residual Dispersion Compensating Photonic Crystal Fiber. Journal of Lightwave Technology. 32 (23), 4578–4584. https://doi.org/10.1109/JLT.2014.2359138.

Lee, Y. S., Lee, C. G. and Kim, S. 2017. Dispersion Compensating Photonic Crystal Fiber Using Double-Hole Assisted Core for High and Uniform Birefringence. Optik. 147: 334–342. https://doi.org/10.1016/j.ijleo.2017.08.121.

Begum, F., Namihira, Y., Razzak, S. M. A. and Zou, N. 2007. Novel Square Photonic Crystal Fibers with Ultra-Flattened Chromatic Dispersion and Low Confinement Losses. IEICE Transactions onf Electronics. E90-C (3): 607–612. https://doi.org/10.1093/ietele/e90-c.3.607.

Guimarães, Á. de O., Silva, J. P. da and Dantas, E. R. M. 2015. Chromatic Dispersion of an Optical Fiber Based on Photonic Quasicrystals with Twelve-Fold Symmetry and Its Application as Directional Coupling. Journal of Microwaves, Optoelectronics and Electromagnetic Application. 14(2): 170–183. https://doi.org/10.1590/2179-10742015v14i2481.

Hansen, K. 2003. Dispersion Flattened Hybrid-Core Nonlinear Photonic Crystal Fiber. Optics Express. 11(13): 1503. https://doi.org/10.1364/OE.11.001503.

Hao, R., Li, Z., Sun, G., Niu, L. and Sun, Y. 2013. Analysis on Photonic Crystal Fibers with Circular Air Holes in Elliptical Configuration. Optical Fiber Technology. 19(5): 363–368. https://doi.org/10.1016/j.yofte.2013.04.005.

Agbemabiese, P. A. and Akowuah, E. K. 2020. Numerical Analysis of Photonic Crystal Fiber of Ultra-High Birefringence and High Nonlinearity. Scientific Reports. 10(1): 21182. https://doi.org/10.1038/s41598-020-77114-x.

Agbemabiese, P. A. and Akowuah, E. K. 2020. Numerical Analysis of Photonic Crystal Fibre with High Birefringence and High Nonlinearity. Journal of Optical Communications. https://doi.org/10.1515/joc-2020-0084.

Khalid, M., Arshad, I. and Zafarullah, M. 2014. Design and Simulation of Photonic Crystal Fibers to Evaluate Dispersion and Confinement Loss for Wavelength Division Multiplexing Systems. The Nucleus. No.2 June 2014.

A., L. and Geetha, G. 2020. A Novel Hybrid Hexagonal Photonic Crystal Fibre for Optical Fibre Communication. Optical Fiber Technology. 59: 102321. https://doi.org/10.1016/j.yofte.2020.102321.

García, A. B., Sukhoivanov, I. A., Lucio, J. A. A., Manzano, O. G. I., Guryev, I., García, J. C. H. and Ortiz, G. R. 2015. Numerical Study of Highly Nonlinear Photonic Crystal Fiber with Tunable Zero Dispersion Wavelengths. Journal of Electromagnetic Analysis and Applications. 07(05): 141–151. https://doi.org/10.4236/jemaa.2015.75016.

Azman, M. F., Mahdiraji, G. A., Wong, W. R., Aoni, R. A. and Mahamd Adikan, F. R. 2019. Design and Fabrication of Copper-Filled Photonic Crystal Fiber Based Polarization Filters. Applied Optics. 58(8): 2068. https://doi.org/10.1364/AO.58.002068.

El Hamzaoui, H., Ouerdane, Y., Bigot, L., Bouwmans, G., Capoen, B., Boukenter, A., Girard, S. and Bouazaoui, M. 2012. Sol-Gel Derived Ionic Copper-Doped Microstructured Optical Fiber: A Potential Selective Ultraviolet Radiation Dosimeter. Optics Express. 20(28): 29751. https://doi.org/10.1364/oe.20.029751.

Cordeiro, C. M. B., Ng, A. K. L. and Ebendorff-Heidepriem, H. 2020. Ultra-Simplified Single-Step Fabrication of Microstructured Optical Fiber. Scientific Reports. 10(1): 9678. https://doi.org/10.1038/s41598-020-66632-3.

Begum, F., Namihira, Y., Kinjo, T. and Kaijage, S. 2010. Supercontinuum Generation in Photonic Crystal Fibres at 1.06, 1.31, and 1.55 µm Wavelengths. Electronics Letters. 46(22): 1518. https://doi.org/10.1049/el.2010.2133.

Begum, F. and Abas, P. E. 2019. Near Infrared Supercontinuum Generation in Silica Based Photonic Crystal Fiber. Progress in Electromagnetics Research C. 89 (December 2018): 149–159. https://doi.org/10.2528/PIERC18100102.

Begum, F., Namihira, Y., Razzak, S. M. A., Kaijage, S. F., Hai, N. H., Miyagi, K., Higa, H. and Zou, N. 2009. Flattened Chromatic Dispersion in Square Photonic Crystal Fibers with Low Confinement Losses. Optical Review. 16(2): 54–58. https://doi.org/10.1007/s10043-009-0011-x.

Maidi, A. M., Abas, P. E., Petra, P. I., Kaijage, S., Zou, N. and Begum, F. 2021. Theoretical Considerations of Photonic Crystal Fiber with All Uniform-Sized Air Holes for Liquid Sensing. Photonics. 8(7): 249. https://doi.org/10.3390/photonics8070249.

Eid, M. M. A., Habib, M. A., Anower, M. S. and Rashed, A. N. Z. 2020. Highly Sensitive Nonlinear Photonic Crystal Fiber Based Sensor for Chemical Sensing Applications. Microsystem Technology. No. September. https://doi.org/10.1007/s00542-020-05019-w.

Rana, S., Saiful Islam, M., Faisal, M., Roy, K. C., Islam, R. and Kaijage, S. F. 2016. Single-Mode Porous Fiber for Low-Loss Polarization Maintaining Terahertz Transmission. Optical Engineering. 55(7): 076114. https://doi.org/10.1117/1.OE.55.7.076114

Downloads

Published

2022-11-29

Issue

Section

Articles

How to Cite

THEORETICAL ANALYSIS OF SQUARE STRUCTURED PHOTONIC CRYSTAL FIBRE USING THE GOLDEN RATIO. (2022). ASEAN Engineering Journal, 12(4), 131-136. https://doi.org/10.11113/aej.v12.18008