THE EFFECT OF MATERIAL STIFFNESS ON DENTAL IMPLANT STABILITY – A FINITE ELEMENT ANALYSIS
DOI:
https://doi.org/10.11113/aej.v13.18087Keywords:
Deformation, Dental implant, Finite element analysis, Material stiffness, Strain, Stress, Deformation, dental implant, finite element analysis, material stiffness, stressAbstract
The perseverance of dental implant system in restoration of occlusion is highly dependent on biomechanical overloading factors such as implant macro geometries, parafunctional oral habits, and material. Different implant materials could affect the load transfer at the bone-implant interface differently which is related to stress shielding phenomenon. To date, the role of various implant materials on the surrounding tissues as well as implant stability is still debatable and unclear especially when the implant failure is of concern. Through this study, implant body with different materials or stiffnesses that are zirconia, Ti-6Al-4V, cpTi, TiZr, and PEEK were investigated via 3-D FEA. The bone tissues were modelled based on CT image datasets and subsequently be processed in SolidWorks software. All geometries were converted into finite element models and analysed in ANSYS software. The bone and implant models were assigned with anisotropic and isotropic properties, respectively. A dynamic occlusal loading of 300 N and pretension of 20 N were applied on the implant body and screw, respectively. The results showed that the less stiff implant increased the bone stress and decreased the implant body stress values compared to the stiffer implant. Moreover, the implant with lower stiffness exhibited lower bone strain and higher implant deformation than the implant with higher stiffness. Of all implant materials analysed, PEEK is observed to be the most satisfactory. However, further modifications on PEEK would be necessary to improve inherent bioactivity and osseointegration.
References
Pal, T. 2015. Fundamentals and History of Implant Dentistry. Journal of International Clinical Dental Research Organization. 7(3): 6-12. DOI: https://doi.org/10.4103/2231-0754.172933
Agustin-Panadero, R., Leon-Martinez, R., Labaig-Rueda, C., Faus-Lopez, J., and Sola-Ruiz, M. F. 2019. Influence of Implant-Prosthetic Connection on Peri-Implant Bone Loss: A Prospective Clinical Trial with 2-Year Follow-Up. The International Journal of Oral & Maxillofacial Implants. 34(4): 963-968. DOI: https://doi.org/10.11607/jomi.7168
Chrcanovic, B. R., Kisch, J., Albrektsson, T., and Wennerberg, A. 2018. Factors Influencing the Fracture of Dental Implants. Clinical Implant Dentistry and Related Research. 20(1): 58-67. DOI: https://doi.org/10.1111/cid.12572
Stoichkov, B. and Kirov, D. 2018. Analysis of the Causes of Dental Implant Fracture: A Retrospective Clinical Study. Quintessence International. 49(4): 279-286. DOI: https://doi.org/10.3290/j.qi.a39846
Naveau, A., Shinmyouzu, K., Moore, C., Avivi-Arber, Jokerst, J., and Koka, S. 2019. Etiology and Measurement of Peri-Implant Crestal Bone Loss (CBL). Journal of Clinical Medicine. 8(2): 166. DOI: https://doi.org/10.3390/jcm8020166
Gupta, S., Gupta, H., and Tandan, A. 2015. Technical Complications of Implant-Causes and Management: A Comprehensive Review. National Journal of Maxillofacial Surgery. 6(1): 3-8. DOI: https://doi.org/10.4103/0975-5950.168233
Kunjappu, J., Mathew, V., Abdul Kader, M., Kuruniyan, M., Mohamed Ali, A., and Shamsuddin, S. 2019. Fracture of Dental Implants: An Overview. International Journal of Preventive and Clinical Dental Research. 6(1): 21-23. DOI: https://doi.org/10.4103/inpc.inpc_27_19
Farawati, F. A., and Nakaparksin, P. 2019. What is the Optimal Material for Implant Prosthesis? Dental Clinics of North America. 63(3): 515-530. DOI: https://doi.org/10.1016/j.cden.2019.02.002
Najeeb, S., Mali, M., Yaqin, S. A. U., Zafar, M. S., Khurshid, Z., Alwadaani, A., and Matinlinna, J. P. 2019. Chapter 21: Dental Implants Materials and Surface Treatments. Advanced Dental Biomaterials. 581-598.
Elias, D. M., Valerio, C. S., de Oliveira, D. D., Manzi, F. R., Zenóbio, E. G., and Seraidarian, P. I. 2020. Evaluation of Different Heights of Prosthetic Crowns Supported by an Ultra-Short Implant using Three-Dimensional Finite Element Analysis. The International Journal of Prosthodontics. 33(1): 81-90. DOI: https://doi.org/10.11607/ijp.6247
Siewert, B., Plaza-Castro, M., Sereno, N., and Jarman-Smith, M. 2019. Chapter 20 – Applications of PEEK in the Dental Field. Peek Biomaterials Handbook. 333-342.
Tekin, S., Değer, Y., and Demirci, F. 2019. Evaluation of the Use of PEEK Material in Implant-Supported Fixed Restorations by Finite Element Analysis. Nigerian Journal of Clinical Practice. 22(9): 1252-1258. DOI: https://doi.org/10.4103/njcp.njcp_144_19
Omar, A., Ishak, M. I., Harun, M. N., Sulaiman, E., and Kasim, N. H. A. 2012. Effects of Different Angulation Placement of Mini-Implant in Orthodontic. Applied Mechanics and Materials. 121-126: 1214-1219. DOI: https://doi.org/10.4028/www.scientific.net/AMM.121-126.1214
Ishak, M. I., Shafi, A. A., Rosli, M. U., Khor, C. Y., Zakaria, M. S., Rahim, W. M. F. W. A., and Jamalludin, M. R. 2017. Biomechanical Evaluation of Different Abutment-Implant Connections – A Nonlinear Finite Element Analysis. AIP Conference Proceedings. 1885(1): 020064. DOI: https://doi.org/10.1063/1.5002258
Ibrahim, M. I. F., Rosli, M. U., Ishak, M. I., Zakaria, M. S., Jamalludin, M. R., Khor, C. Y., Rahim, W. M. F. W. A., Nawi, M. A. M., and Shahrin, S. 2018. Simulation Based Optimization of Injection Molding Parameter for Meso-Scale Product of Dental Component Fabrication using Response Surface Methodology (RSM). AIP Conference Proceedings. 2030(1): 020078. DOI: https://doi.org/10.1063/1.5066719
Nawi, M. A. M., Razman Amin, M., Kasim, M. S., Izamshah, R., Ishak, M. I., Khor, C. Y., Rosli, M. U., Jamalludin, M. R., and Mohamad Syafiq, A. K. 2019. The Influence of Spiral Blade Distributor on Pressure Drop in a Swirling Fluidized Bed. IOP Conference Series: Materials Science and Engineering. 551(1): 012106. DOI: https://doi.org/10.1088/1757-899x/551/1/012106
Khor, C. Y., Ishak, M. I., Rosli, M. U., Jamalludin, M. R., Zakaria, M. S., Yamin, A. F. M., Abdul Aziz, M. S., and Abdullah, M. Z. 2017. Influence of Material Properties on the Fluid-Structure Interaction Aspects During Molded Underfill Process. MATEC Web of Conferences. 97: 01059. DOI: https://doi.org/10.1051/matecconf/20179701059
Abo Sabah, S., Kueh, A., and Bunnori, N. 2019. Failure Mode Maps of Bio-Inspired Sandwich Beams under Repeated Low-Velocity Impact. Composites Science and Technology. 182: 107785. DOI: https://doi.org/10.1016/j.compscitech.2019.107785
Hanif, M. U., Ibrahim, Z., Ghaedi, K., Javanmardi, A., and Rehman, S. K. 2018. Finite Element Simulation of Damage in RC Beams. Journal of Civil Engineering, Science and Technology. 9(1): 50-57. DOI: https://doi.org/10.33736/jcest.883.2018
Ghaedi, K., Ibrahim, Z., Javanmardi, A., Jameel, M., Hanif, U., Rehman, S. K., and Gordan, M. 2018. Finite Element Analysis of a Strengthened Beam Deliberating Elastically Isotropic and Orthotropic CFRP Material. Journal of Civil Engineering, Science and Technology. 9(2): Paper 5. DOI: https://doi.org/10.33736/jcest.991.2018
Al-Fasih, M. Y., Kueh, A. B. H., Abo Sabah, S. H., and Yahya, M. Y. 2018. Tow Waviness and Anisotropy Effects on Mode II Fracture of Triaxially Woven Composite. Steel and Composite Structures. 26(2): 241-253. DOI: https://doi.org/10.12989/scs.2018.26.2.241
Al-Fasih, M. Y., Kueh, A. B. H., Abo Sabah, S. H., and Yahya, M. Y. 2017. Influence of Tows Waviness and Anisotropy on Effective Mode I Fracture Toughness of Triaxially Woven Fabric Composites. Engineering Fracture Mechanics. 182: 521-536. DOI: https://doi.org/10.1016/j.engfracmech.2017.03.051
Yalçın, M., Kaya, B., Laçin, N., and Arı, E. 2019. Three-Dimensional Finite Element Analysis of the Effect of Endosteal Implants with Different Macro Designs on Stress Distribution in Different Bone Qualities. The International Journal of Oral & Maxillofacial Implants. 34(3): e43–e50. DOI: https://doi.org/10.11607/jomi.7058
Schwitalla, A. D., Abou-Emara, M., Spintig, T., Lackmann, J., and Müller, W. D. 2015. Finite Element Analysis of the Biomechanical Effects of Peek Dental Implants on the Peri-Implant Bone. Journal of Biomechanics. 48(1): 1-7. DOI: https://doi.org/10.1016/j.jbiomech.2014.11.017
Tribst, J. P. M., Dal Piva, A. M. d. O., Borges, A. L. S., and Bottino, M. A. 2020. Influence of Socket-Shield Technique on the Biomechanical Response of Dental Implant: Three-Dimensional Finite Element Analysis. Computer Methods in Biomechanics and Biomedical Engineering. 23(6): 224-231. DOI: https://doi.org/10.1080/10255842.2019.1710833
Hudieb, M. I., Wakabayashi, N., Abu-Hammad, O. A., and Kasugai, S. 2019. Biomechanical Effect of an Exposed Dental Implant's First Thread: A Three-Dimensional Finite Element Analysis Study. Medical Science Monitor. 25: 3933-3940. DOI: https://doi.org/10.12659/msm.913186
Robau-Porrua, A., Pérez-Rodríguez, Y., Soris-Rodríguez, L. M., Pérez-Acosta, O., and González, J. E. 2020. The Effect of Diameter, Length and Elastic Modulus of a Dental Implant on Stress and Strain Levels in Peri-Implant Bone: A 3D Finite Element Analysis. Bio-Medical Materials and Engineering. 30: 541-558. DOI: https://doi.org/10.3233/BME-191073
Tretto, P. H. W., dos Santos, M. B. F., Spazzin, A. O., Pereira, G. K. R., and Bacchi, A. 2020. Assessment of Stress/Strain in Dental Implants and Abutments of Alternative Materials Compared to Conventional Titanium Alloy – 3D Non-Linear Finite Element Analysis. Computer Methods in Biomechanics and Biomedical Engineering. 23(8): 372-383. DOI: https://doi.org/10.1080/10255842.2020.1731481
Brune, A., Stiesch, M., Eisenburger, M., and Greuling, A., 2019. The Effect of Different Occlusal Contact Situations on Peri-Implant Bone Stress – A Contact Finite Element Analysis of Indirect Axial Loading. Materials Science and Engineering: C. 99: 367-373. DOI: https://doi.org/10.1016/j.msec.2019.01.104
Bataineh, K., and Al Janaideh, M. 2019. Effect of Different Biocompatible Implant Materials on the Mechanical Stability of Dental Implants under Excessive Oblique Load. Clinical Implant Dentistry and Related Research. 21(6): 1206-1217. DOI: https://doi.org/10.1111/cid.12858
Sego, T. J. 2016. Finite Element Analysis of and Multiscale Skeletal Tissue Mechanics Concerning a Single Dental Implant Site. Thesis (Master), Purdue University, Ann Arbor, Michigan, United States of America.
Dantas, T. A., Carneiro Neto, J. P., Alves, J. L., Vaz, P. C. S., and Silva, F. S. 2020. In Silico Evaluation of the Stress Fields on the Cortical Bone Surrounding Dental Implants: Comparing Root-Analogue and Screwed Implants. Journal of the Mechanical Behavior of Biomedical Materials. 104: 103667. DOI: https://doi.org/10.1016/j.jmbbm.2020.103667
Matsuzaki, T., Ayukawa, Y., Matsushita, Y., Sakai, N., Matsuzaki, M., Masuzaki, T., Haraguchi, T., Ogino, Y., and Koyano, K. 2019. Effect of Post-Osseointegration Loading Magnitude on the Dynamics of Peri-Implant Bone: A Finite Element Analysis and In Vivo Study. Journal of Prosthodontic Research. 63(4): 453-459. DOI: https://doi.org/10.1016/j.jpor.2018.10.009
Dorogoy, A., Rittel, D., Shemtov-Yona, K., and Korabi, R. 2017. Modeling Dental Implant Insertion. Journal of the Mechanical Behavior of Biomedical Materials. 68: 42-50. DOI: https://doi.org/10.1016/j.jmbbm.2017.01.021