THE EFFECT OF DIFFERENT DECODING TECHNIQUES WITH GAUSSIAN APPROXIMATION ON THE PERFORMANCE OF POLAR CODES

Authors

  • Hamizan Suhaimi Wireless High Speed Network Group (WHiSNet), School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
  • Nurul Syazlina Shuhaimi Wireless High Speed Network Group (WHiSNet), School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
  • Roslina Mohamad Wireless High Speed Network Group (WHiSNet), School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia

DOI:

https://doi.org/10.11113/aej.v12.18358

Keywords:

Amplitude shift keying, fifth-generation wireless standard, Gaussian approximation, polar codes, successive cancellation list decoding

Abstract

In the last ten years, polar code research has piqued the interest of firms and researchers, particularly in the communication industry. Polar codes have been utilised as a coding method for the fifth-generation wireless standard (5G). However, the polar decoder does not adequately correct errors in successive cancellation (SC) decoding when dealing with short- to intermediate-length codes. However, SC decoding can correct errors more efficiently by using sequential cancellation list (SCL) decoding. The main drawback of SCL is its higher cost due to computational complexity and throughput. The present research investigates the effect of Gaussian approximation (GA) and different decoding approaches on the performance of polar codes. First, SC and SCL decoders are developed utilising amplitude shift keying modulation; a decoder using GA is then integrated. According to simulation data, the SCL, both with and without GA, exhibits a better block error rate (BLER) than SC. The maximum difference between the SCL decoder and SC decoder is 0.6 dB at BLER=0.1 for N=2048. Furthermore, at BLER=5.6 x 10-6, the SCL decoder with GA performs better than the SC decoder for block lengths, N=1024, with a maximum difference of 2.72 dB. When the polar decoder with GA is utilised, enhancements are observed in polar code performance for various list sizes and block lengths, although time complexity is increased.

References

Arikan, E. 2009. Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels. IEEE Transactions on information Theory. 55(7):401-404. DOI: http://dx.doi.org/10.1109/ISIT.2008.4595172

Cyriac, A. and Narayanan, G. 2018, October. Polar Code Encoder and Decoder Implementation. In 2018 3rd International Conference on Communication and Electronics Systems (ICCES). 294-302.

DOI: http://dx.doi.org/10.1109/CESYS.2018.8723895

Sharma, A. and Salim, M. 2017, July. Polar Code: The Channel Code contender for 5G scenarios. In 2017 International conference on computer, communications and electronics (Comptelix). 676-682. DOI: http://dx.doi.org/10.1109/COMPTELIX.2017.8004055

Zhang, H., Li, R., Wang, J., et al. 2018. Parity-check polar coding for 5g and beyond. In 2018 IEEE International Conference on Communications (ICC). 1-7. DOI: http://dx.doi.org/10.1109/ICC.2018.8422462

Dhuheir, M. and Ozturk, S. 2018, October. Polar codes analysis of 5G systems. In 2018 6th International Conference on Control Engineering & Information Technology (CEIT). 25-27. DOI: http://dx.doi.org/10.1109/CEIT.2018.8751838

Mhaske, S. and Spasojevic, P. 2016. On Forward Error Correction. In IEEE 5G Roadmap Workshop.

Niu, K. and Chen, K. 2012. CRC-aided decoding of polar codes. IEEE communications letters. 16(10): 1668-1671. DOI: http://dx.doi.org/10.1109/LCOMM.2012.090312.121501

Hasan, A. A. and Marsland, I. D. 2017. Low complexity LLR metrics for polar coded QAM. In 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE). 1-4. DOI: http://dx.doi.org/10.1109/CCECE.2017.7946778

Bioglio, V., Condo, C. and Land, I. 2020. Design of Polar Codes in 5G New Radio. IEEE Communications Surveys & Tutorials. 23(1): 29-40. DOI: http://dx.doi.org/10.1109/COMST.2020.2967127

Trifonov, P. 2012. Efficient design and decoding of polar codes. IEEE Transactions on Communications. 60(11): 3221-3227. DOI: http://dx.doi.org/10.1109/TCOMM.2012.081512.110872

Li, W. and He, Z. 2021. An Efficient CRC-Aided Parity-Check Concatenated Polar Coding. In 2021 IEEE Asia Conference on Information Engineering (ACIE). 1-5. DOI: http://dx.doi.org/10.1109/ACIE51979.2021.9381073

Hu, M., Li, J. and Lv, Y. 2017. A comparative study of polar code decoding algorithms. In 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC). 1221-1225. DOI: http://dx.doi.org/10.1109/ITOEC.2017.8122551

J Dai, J., Niu, K. and Si, Z. 2017. Evaluation and Optimization of Gaussian Approximation for Polar Codes. arXiv preprint arXiv:1511.07236.

Yang, N., Jing, S., Yu, A., et al. 2018. Reconfigurable Decoder for LDPC and Polar Codes. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS). 2-6. DOI: http://dx.doi.org/10.1109/ISCAS.2018.8351337

Lin, T., Cao, S., Zhang, S., Xu, S. and Zhang, C. 2019. A Reconfigurable Decoder for Standard-Compatible LDPC Codes and Polar Codes. In 2019 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). 73-76. DOI: http://dx.doi.org/10.1109/APCCAS47518.2019.8953182

Shen, Y., Song, W., Ji, H, et al. 2020. Improved Belief Propagation Polar Decoders with Bit-Flipping Algorithms. IEEE Transactions on Communications. 68(11): 6699-6713. DOI: http://dx.doi.org/10.1109/TCOMM.2020.3017656

Cyriac, A. and Narayanan, G. 2018. Polar Code Encoder and Decoder Implementation. In 2018 3rd International Conference on Communication and Electronics Systems (ICCES). 294-302. DOI: http://dx.doi.org/10.1109/CESYS.2018.8723895

Condo, C., Bioglio, V. and Land, I. 2018. Generalized Fast Decoding of Polar Codes. In 2018 IEEE Global Communications Conference (GLOBECOM). 1-6. DOI: http://dx.doi.org/10.1109/GLOCOM.2018.8648105

Lee, H. C., Pao, Y. S., Chi, C.Y., Lee, H. Y. and Ueng, Y. L. 2020, May. An Early Termination Scheme for Successive Cancellation List Decoding of Polar Codes. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 1798-1802. DOI: http://dx.doi.org/10.1109/ICASSP40776.2020.9053566.

Li, J., Gao, Z. and Lv, Y. 2020. Gaussian Approximation Optimized SC- Flip Decoding Algorithm of Polar Codes. In 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). 1: 1124-1127. DOI: http://dx.doi.org/10.1109/ITNEC48623.2020.9084888

Rao, W., Liu, Z., Huang, L., Sun, J. and Dai, L. 2020. CNN-SC Decoder for Polar Codes under Correlated Noise Channels. ICEICT 2020 - IEEE 3rd International Conference on Electronic Information and Communication Technology. 748-751. DOI: http://dx.doi.org/10.1109/ICEICT51264.2020.9334237

Corlay, V. 2022. On the latency of multi-level polar coded modulations. arXiv preprint arXiv:2206.00340. DOI: https://doi.org/10.48550/arXiv.2206.00340.

Dhuheir, M., and Öztürk, S. 2018. Polar Codes Applications for 5G Systems. Journal of Institute of Science and Technology. 34(3): 1-16. DOI: http://dx.doi.org/10.1109/CEIT.2018.8751838

Zhou, D., Dai, J., Niu, K., et al. 2017. Polar-Coded Modulation Based on the Amplitude Phase Shift Keying Constellations. China Communications. 14(9): 166-177. DOI: http://dx.doi.org/10.1109/CC.2017.8068774

Leroux, C., Raymond, A. J, Sarkis, G., Tal, I., Vardy, A. and Gross, W. J. 2012. Hardware Implementation of Successive Cancellation Decoding For Polar Codes. Journal of Signal Processing Systems. 69(3): 305-315. DOI: http://dx.doi.org/10.1007/s11265-012-0685-3

Leroux, C., Tal, I., Vardy, A. and Gross, WJ. 2011. Hardware Architectures For Successive Cancellation Decoding of Polar Codes. In 2011 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). 1665-1668. DOI: http://dx.doi.org/10.1109/ICASSP.2011.5946819

Wu, D., Li, Y. and Sun, Y. 2014. Construction and Block Error Rate Analysis of Polar Codes Over AWGN Channel Based on Gaussian Approximation. IEEE Communications Letters.18(7):1099-1102. DOI: http://dx.doi.org/10.1109/LCOMM.2014.2325811

Fang, Y. 2019, June. Improved Segmented SC-Flip Decoding of Polar Codes Based on Gaussian Approximation. In 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech). 1-5. DOI: http://dx.doi.org/10.23919/SpliTech.2019.8783128

Georg, B., Prinz, T., Yuan, P., and Steiner, F. 2017. Efficient Polar Code Construction for Higher-Order Modulation. 2017 IEEE Wireless Communications and Networking Conference Workshops (WCNCW). 1-6. DOI: http://dx.doi.org/10.1109/WCNCW.2017.7919039

Yajima, Y., and Ochiai, H. 2013. On Design of Multilevel Coded Modulation Based on CRC-Concatenated Polar Codes. In IEEE 17th Annual Consumer Communications and Networking Conference (CCNC). 17(4): 725-728. DOI: http://dx.doi.org/10.1109/CCNC46108.2020.9045155

Sarkis, G., Gross, W. J. 2013. Increasing the Throughput of Polar Decoders. IEEE Communications Letters. 17(4):725-728. DOI: http://dx.doi.org/10.1109/LCOMM.2013.021213.121633

Downloads

Published

2022-11-29

How to Cite

Suhaimi, H. ., Shuhaimi, N. S., & Mohamad, R. (2022). THE EFFECT OF DIFFERENT DECODING TECHNIQUES WITH GAUSSIAN APPROXIMATION ON THE PERFORMANCE OF POLAR CODES. ASEAN Engineering Journal, 12(4), 51-57. https://doi.org/10.11113/aej.v12.18358

Issue

Section

Articles