FLOWABILITY PROPERTIES OF BINARY POWDER MIXTURES CONTAINING DATES POWDER (PHEONIX DACTYLIFERA) MIXED WITH LACTOSE MONOHYDRATE AND MICROCRYSTALLINE CELLULOSE BASED EXCIPIENTS
DOI:
https://doi.org/10.11113/aej.v13.18784Keywords:
Pheonix dactylifera dates powder, flowability, FLOWLAC 100, AVICEL PH102, AVICEL CE-15Abstract
Powder flow is important in powder processing industries to obtain a quality by design product and efficient manufacturing process. Poor powder flowability can cause problems especially during high speed tableting and capsule filling processes. In this study, dates powder (DP), lactose monohydrate powder, and two types of microcrystalline-based powder excipients evaluated for their flow properties as a binary mixture. Angle of repose (AoR), Hausner ratio (HR) and Carr index (CI) were used to characterize the extent of the powder cohesion. The results show that generally, as particle size increases, values of AoR generally decreases, depicting lower flowability characteristics with decreasing binary mixture particle size. However, HR and CI flowability indicators give contrasting flowability characteristics for the binary mixture containing lactose monohydrate and dates powder.
References
Iftikhar Hussain, M., Farooq, M. and Abbas Syed, Q. 2020. Nutritional and biological characteristics of the date palm fruit (Phoenix dactylifera L.) – A review. Food Bioscience. 34: 100509. DOI: https://doi.org/10.1016/j.fbio.2019.100509
Amellal, H., Ait-Ameur, L., Benamara, S., et al. 2007. Treatment of Mech-Degla date by immersion in the citrus juices. In: Evangelos SL, editor. Proceeding of 5th International Congress on Food Technology. March 9-11; Thessaloniki, Greece: 1: 647-652. DOI: https://dx.doi.org/10.3923/ajft.2008.79.88
Ngwuluka, N. C., Idiakhoa, B. A., Nep EI, Ogaji, I. and Okafor, I. S. 2010. Formulation and evaluation of paracetamol tablets manufactured using the dried fruit of Phoenix dactylifera Linn as an excipient. Research in Pharmaceutical Biotechnology. 2: 25-32. DOI: https://doi.org/10.5897/RPB.9000016
Adiba, B.D., Benamara, S., Nabil, S. and Abdelhakim, M. 2011. Preliminary characterization of food tablets from date (Phoenix dactylifera L.) and spirulina (Spirulina sp.) powders. Powder Technology. 208: 725 730. DOI: https://doi.org/10.1016/j.powtec.2011.01.016
Megdoud, D., Boudaa, M., Ouamrane, F. and Benamara, S. 2014. Influence of the compression force and powder particle size on some physical properties of date fruit (Phoenix dactylifera) tablets. International Journal of Nutrition and Food Engineering. 8: 1163-1167. DOI: http://dx.doi.org/10.11113/jt.v79.9987
VodáIková, P., Vraníková, B., SvaIinová, P., Aleš F., Jan, E., Jan M., Roman, K. and Tomaš S. 2018. Evaluation and comparison of three types of spray dried coprocessed excipient Avicel® for direct compression. BioMed Research International. 1-15. DOI: http://dx.doi.org/10.11113/jt.v79.9987
Rasanen, E, Antikainen, O, and Yliruusi, J. A. 2003. New method to predict flowability using a microscale fluid bed. AAPS PharmSciTech. 4: 418 424. DOI: http://dx.doi.org/10.11113/jt.v79.9987
Etti, C.J., Yusof, Y. A., Chin, N. L. and Mohd Tahir, S. 2016. Effects of formulation on flowability of selected herbal powders using compendial methods and powder flow analyser. International Food Research Journal. 2016; 23 (Suppl): S225-S230.
Legoix, L., Gatumel, C., Milh´e, M. and Berthiaux, H. 2017. Characterizing powders in order to determine their flow behavior in a mixer: From small scale observations to macroscopic in-mixer rheology for powders of various flowabilities. Powder Technology. 1-13. DOI: http://dx.doi.org/10.11113/jt.v79.9987
Hildebrandt, C., Gopireddy, S. R., Fritsch, A. K., Profitlich, T., Scherlie, R. and Urbanetz, N. A. 2017. Evaluation and prediction of powder flowability in pharmaceutical tableting. Pharmaceutical Development and Technology. 35-47. DOI: http://dx.doi.org/10.11113/jt.v79.9987
Fara Wahida, A. H., Anuar, M. S., Baharuddin, A. S., Mohamed, M. A. P., Naim, M. N. and Mohd Tahir, S. 2018. Preliminary characterization of Phoenix dactylifera (date) and lactose monohydrate binary powder mixture In: Azmah Hanim MA, Aiza Jaafar CN, Vidyatharran K. editors. Basic methodology: Sample preparation and characterization, UPM Serdang. 31-35. DOI: http://dx.doi.org/10.11113/jt.v79.9987
Shangraw, R. F. Edited by: Lieberman, H. A., Lachman, L., and Schwartz, J. B. 1989. Pharmaceutical Dosage Forms: Tablet. New York: Marcel Dekker. DOI: http://dx.doi.org/10.11113/jt.v79.9987
Mohan, S. 2012. Compression Physics of Pharmaceutical Powders: A Review. International Journal of Pharmaceutical Sciences and Research. 3(6): 1580-1592. DOI: http://dx.doi.org/10.11113/jt.v79.9987
Shah, R. B., Tawakkul, M. A. and Khan, M. A. 2008. Comparative evaluation of flow for pharmaceutical powders and granules. AAPS PharmSciTech. 9(1): 250 258. DOI: http://dx.doi.org/10.11113/jt.v79.9987
The United States Pharmacopieal Convention (USP). 2007. Powder flow (1174). Available from: http://www.pharmacopeia.cn/v29240/usp29nf24s0_c1174. html Retrieve on 17 May 2022
The United States Pharmacopieal Convention (USP). 2007. Bulk density and tapped density (616). Available from: http://www.usp.org/sites/default/files/usp_pdf/EN/USPNF/revisions/m99375 bulk_density_and_tapped_density_of_powders.pdf Retrieve on 17 May 2022
Carr, R. L. 1965. Evaluating flow properties of solids. Chemical Engineering. 72: 163-168.
Hausner, H. H. 1967. Friction conditions in a mass of metal powder. International Journal of Powder Metallurgy. 3(4): 7-13.
Faqih, A., Chaudhuri, B., Alexander, A. W., Davies, C., Muzzio, F. J. and Tomassone, M. S. 2006. An experimental computational approach for examining unconfined cohesive powder flow. International Journal of Pharmaceutics. 324: 116–127. DOI: https://doi.org/10.1016/j.ijpharm.2006.05.067
Hancock, B. C., Vukovinsky, K. E., Brolley, B., Grimsey, I., Hedden, D., Olsofsky, A. and Doherty, R. A. 2004. Development of a robust procedure for assessing powder flow using a commercial avalanche testing instrument. Journal of Pharmaceutical and Biomedical Analysis. 35: 979 990. DOI: https://doi.org/10.1016/j.jpba.2004.02.035
Jenike, A. W. Storage and flow of solids. 1964. Bulletin No. 123. Utah, USA: Utah Engineering Station Bulletin, University of Utah. DOI: https://doi.org/10.2172/5240257
Dyakowski, T., Luke, S. P., Ostrowski, K. L., and Williams, R. A. 1999. On-line monitoring of dense phase flow using real time dielectric imaging. Powder Technology. 104: 287-295. DOI: https://doi.org/10.1016/S0032-5910(99)00106-0
Weth, M., Hoffman, M., Kuhn, J. and Fricke, J. 2001. Measurement of attractive forces between single aerogel powder particles and the correlation with powder flow. Journal of Non-Crystalline Solids. 285: 236–243. DOI: https://doi.org/10.1016/S0022-3093(01)00460-4
Zatloukal, Z. and Sklubalova, Z. 2007. Penetrometry and estimation of the flow rate of powder excipients. Pharmazie. 62: 185–189. DOI: https://doi.org/10.1691/ph.2007.3.6095
Saifullah, M., Yusof, Y. A., Chin, N. L. and Aziz, M. G. 2016. Physicochemical and flow properties of fruit powder and their effect on the dissolution of fast dissolving fruit powder tablets. Powder Technology. 301: 396–404. DOI: https://doi.org/10.1016/j.powtec.2016.06.035
Shamsuddin, A., Anuar, M. S. and Tahir, S. M. 2014. Characteristics of tableted roselle (Hibiscus sabdariffa Linn.) with addition of sodium starch glycolate. Particulate Science and Technology. 32: 384–391. DOI: https://doi.org/10.1080/02726351.2014.880095
Hurychová, H., Kuentz, M. and Zdenka, S. 2018. Fractal Aspects of Static and Dynamic Flow Properties of Pharmaceutical Excipients. Journal of Pharmaceutical Innovation. 13: 15–26. DOI: https://doi.org/10.1007/s12247-017-9302-0
Ganesan, V., Rosentrater, K. A. and Muthukumarappan, K. 2008. Flowability and handling characteristics of bulk solids and powders – a review with implications for DDGS. Biosystems Engineering. 101: 425 435. DOI: https://doi.org/10.1016/j.biosystemseng.2008.09.008
Li, X. H., Zhao, L. J., Ruan, K. P., Feng, Y. and Ruan, K. F. 2013. The application of factor analysis to evaluate deforming behaviors of directly compressed powders, Powder Technology. 247: 47–54. DOI: https://doi.org/10.1016/j.powtec.2013.06.040
Van der Walt. 2010. Evaluation and comparison of the physical properties and drug release characteristics of directly compressible lactose-based filler/binders [master’s thesis]. South Africa; North-West University. https://repository.nwu.ac.za/handle/10394/4922 Retrieve on 17 May 2022
Thoorens, G., Krier, F., Leclercq, B., Carlin, B. and Evrard, B. 2014. Mycrocrystalline cellulose, a direct compression binder in a quality by design environment – A review, International Journal of Pharmaceutics. 473: 64-72. DOI: https://doi.org/10.1016/j.ijpharm.2014.06.055
Khan. K. A., Musikabhumma, P and Warr, J. P. 1981. The effect of moisture content of microcrystalline cellulose on the compressional properties of some formulations. Drug Development and Industrial Pharmacy. 7: 525-538. DOI: https://doi.org/10.3109/03639048109057729
Geldart, D., Abdullah, E. C., Hassanpour, A. Nwoke, L. C. and wouters, I. 2006. Characterization of powder flowability using measurement of angle of repose, China Particuology. 4: 104-107. DOI: https://doi.org/10.1016/S1672-2515(07)60247-4
Lu, H., Guo, X., Gong, X. Huag, W., Ma, S. and Wang, C. 2009. Study of the flowability of pulverized coals. Energy Fuels. 23: 5529-5535. DOI: https://doi.org/10.1021/ef9005753
Krantz, M., Zhang, H. and Zhu, J. 2009. Characterization of powder flow: Static and dynamic testing. Powder Technology. 194: 239-245. DOI: https://doi.org/10.1016/j.powtec.2009.05.001
Wang, W., Zhang, J., Yang, S., Zhang, H., Yang, H. and Yue, G. 2010. Experimental study on the angle of repose of pulverized coal. Particuology. 8: 482-485. DOI: https://doi.org/10.1016/j.partic.2010.07.008
Li, Q., Rudolph, V., Weigl, B. and Earl, A. 2004. Interparticle van der Waals force in powder flowability and compactibility. International Journal of Pharmaceutics. 280: 77-93. DOI: https://doi.org/10.1016/j.ijpharm.2004.05.001
Jallo, L. J., Ghoroi, C., Gurumurthy, L., Patel, U. and Dave, R. N. 2012. Improvement of flow and bulk density of pharmaceutical powders using surface modification. International Journal of Pharmaceutics. 423: 213 225. DOI: https://doi.org/10.1016/j.ijpharm.2011.12.012
Xu, G., Ping, L., Minghui, L., Cai, L., Pan, X., Daoyin, L. and Xiaoping, C. 2017. Investigation on characterization of powder flowability using different testing methods. Experimental Thermal and Fluid Science. 1 11. DOI: https://doi.org/10.1016/j.expthermflusci.2017.11.008
Wong, A. C. Y. 2000. Characterization of the flowability of glass beads by bulk densities ratio. Chemical Engineering Science. 55: 3855-3859. DOI: https://doi.org/10.1016/S0009-2509(00)00048-8
Goh, H. P., Wan, P. S. H. and Liew, C. V. 2018. Comparative evaluation of powder flow parameters with reference to particle size and shape. International Journal of Pharmaceutics. 1-10. DOI: https://doi.org/10.1016/j.ijpharm.2018.05.059
Nikmatul I. E. J., Bill L. S, Hendro Y. P., and Karina C. R. 2021. Formulation and Evaluation of Two Types of Functional Beverage Granules Made of Extracts of Guava Leaves, Purple Sweet Potato and Cinnamon. Tropical Journal of Product research. 5 (6):1024-1029. DOI: https://doi.org/10.26538/tjnpr/v5i6.7
Ireneusz O., Marcin C., Mateusz S., Karolina L., Marcin O. and Mateusz P. 2021. Studies on Moisture Effects on Powder Flow and Mechanochemical Improvement of Powder Flowability. Advances in Science and Technology Research Journal. 15(2): 228–246 DOI: https://doi.org/10.12913/22998624/135395
Liao Z., Wang J., Liang X., Zhang N., Zhong S., Ming L., Zhao G. and Luo Y. 2013. The relationship of flowability, hygroscopicity and compressibility properties between Microcrystalline cellulose, Sarcandrae extract powder, and the mixture of the two materials. Advanced Materials Research. 781-784: 1115-1121. DOI: 10.4028/www.scientific.net/AMR.781-784.1115
Zhang J., Wu C. Y., Pan X. and Wu C. 2017. On identification of critical material attributes for compression behaviour of pharmaceutical diluent powders. Materials. 10(845): 1-16 doi:10.3390/ma1007084