COMPUTATIONAL FLUID DYNAMICS ANALYSIS ON OVERWEIGHT SLEEP APNEA PATIENT UNDER VARIOUS BREATHING FLOW PATTERNS

Authors

  • Muhammad Nooramin Che Yaakob Department of Mechanical, Arau Vocational College, Perlis, Malaysia
  • W.M. Faizal Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia
  • C.Y. Khor Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis, Perlis, Malaysia

DOI:

https://doi.org/10.11113/aej.v13.18864

Keywords:

Obstructive Sleep Apnea, Computational Fluid Dynamics, Turbulent Kinetic Energy, Reynold's Averaged Navier Stoke

Abstract

Obstructive Sleep Apnea (OSA) is a breathing disorder that occurs during sleep. This syndrome affects numerous people, especially those with abnormal body fat composition parameters such as body mass index (BMI) of more than 25 kg/m2 (overweight & obesity). OSA ensues when the tongue and soft palate muscles in a relaxed condition move towards gravity when the patient is in a supine position; this causes narrowing and blockage on the upper airway affecting breathing. There are several treatments for OSA, including upper airway surgery. A better understanding of airflow characteristics will assist ENT surgeons in identifying the blockage area. This paper examines airflow characteristics of the upper airway for overweight sleep apnea patients. The narrow and blockage area on the respiratory tract causes turbulence formation that is evaluated using Computational Fluid Dynamic (CFD) based on an actual parameter of the 3D model obtained by CT scan image result. Reynold’s averaged Navier-Stoke (RANS) equation and turbulent model, k-ω shear stress transport (SST), were applied. Airflow fluctuation was characterized by crucial parameters such as velocity, pressure, and turbulent kinetic energy (TKE). The result shows that the narrow cross-sectional area of the airway causes accretion of the velocity and pressure in the pharyngeal airway. The increasing airflow parameter results in high turbulent kinetic energy (TKE) that will determine the severity level of OSA patients. Investigating airflow characteristics in overweight OSA patients will help the medical practitioner validate the narrow and blockage area for the surgery.

References

Kushida, C.A., Culebras, A., Ivanenko, A., Watson, N.F., 2007. Obstructive sleep apnea: Pathophysiology, comorbidities, and consequences. New York, N.Y: Library of Congress Cataloging-in-Publication Data. 3(1):1-3. DOI: https://doi.org/10.3109/9781420020458

Benjafield, A.V., Ayas, U.T., Eastwood, P.R., Heinzer, R., Ip, M.S.M., Morrell, M.J., Nunez, C.M., Patel, S.R., Penzel, T., Pépin, J.-L.D., 2019. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Author manuscript. 7(8): 687–698. DOI : https://doi.org/10.1016/S2213-2600(19)30198-5

Levitzky, M.G., 2008. Using the pathophysiology of obstructive sleep apnea to teach cardiopulmonary integration. Department of Physiology. New Orleans, Louisiana: Louisiana State University Health Sciences Center. 32: 196–202. DOI: https://doi.org/10.1152/advan.90137.2008

Jehan, S., Zizi, F., Pandi-Perumal, S.R., Wall, S., Auguste, E., Myers, A.K., Jean-Louis, G., McFarlane, S.I., 2017. Obstructive Sleep Apnea and Obesity: Implications for Public Health. HHS Public Access. 1(4):93-99. DOI: https://doi.org/10.15406/smdij.2017.01.00019

Wolk, R., Shamsuzzaman, A.S.M., Somers, V.K., 2003. Obesity, Sleep Apnea, and Hypertension. American Heart Association. 42:1067-1074. DOI: https://doi.org/10.1161/01.HYP.0000101686.98973.A3

Chung, J., Lam, M., Choi, J., Mak, W., Sau, M., Ip, M., 2011. Obesity, obstructive sleep apnoea and metabolic syndrome. Asian Pacific Society of Respirology. 17: 223–236. DOI: https://doi.org/10.1111/j.1440-1843.2011.02081.x

Godoy, I.R.B., Martinez-Salazar, E.L., Eajazi, A., Genta, P.R., Bredella, M.A., Torriani, M., 2016. Fat accumulation in the tongue is associated with male gender, abnormal upper airway measures and whole-body adiposity. HHS Public Access. 65(11): 1657–1663. DOI: https://doi.org/10.1016/j.metabol.2016.08.008.

Wang, S.H., Keenan, B.T., Wiemken, A., Zang, Y., Staley, B., Sarwer, D.B., Torigian, D.A., Williams, N., Pack, A.I., Schwab, R.J., 2019. Effect of Weight Loss on Upper Airway Anatomy and the Apnea–Hypopnea Index. Respiratory and Critical Care Medicine. 201(6): 718–727 DOI: https://doi.org/10.1164/rccm.201903-0692OC

Shang, Y., Hu, B., Yin, G., Fu, S., Ye, J., 2021. Computational fluid dynamics investigation on effects of uvulopalatopharyngoplasty on upper airway stability. AIP Advances. 11 (6): 065225. DOI: https://doi.org/10.1063/5.0053326

Ogawa, T., Enciso, R., Shintaku, W.H., Clark, G.T., 2007. Evaluation of cross-section airway configuration of obstructive sleep apnea. NIH Public Access. 103(1), 102–108.DOI: https://doi.org/10.1016/j.tripleo.2006.06.008

W.M.Faizal, Ghazali, N.N.N., Khor, C.Y., M.Z.Zainon, Ibrahim, N.B., Razif, R.M., 2021. Turbulent Kinetic Energy Of Flow During Inhale And Exhale To Characterize The Severity Of Obstructive Sleep Apnea Patient. Research Square. Version 1. DOI: https://doi.org/10.21203/rs.3.rs-1102041/v1

Jeong, S.J., Kim, W.S., Sung, S.J., 2007. Numerical investigation on the flow characteristics and aerodynamic force of the upper airway of patient with obstructive sleep apnea using computational fluid dynamics. Medical Engineering & Physiccs. 29(2007): 637-651. DOI: https://doi.org/10.1016/j.medengphy.2006.08.017

Mylavarapu, G., Murugappan, S., Mihaescu, M., Kalra, M., Khosla, S., Gutmark, E., 2009. Validation of computational fluid dynamics methodology used for human upper airway flow simulations. Journal of Biomech. 42: 1553-1559. DOI: https://doi.org/10.1016/j.jbiomech.2009.03.035

Powell, N.B., Mihaescu, M., Mylavarapu, G., Weaver, E.M., Guilleminault, C., Gutmark, E., 2011. Patterns in pharyngeal airflow associated with sleep-disordered breathing. Sleep Medicine. 12: 966-974. DOI: https://doi.org/10.1016/j.sleep.2011.08.004

M. Faizal, W., N. N. Ghazali, N., Y. Khor, C., Z. Zainon, M., Anjum Badruddin, I., Kamangar, S., Binti Ibrahim, N., Mohd Razi, R., 2021. Computational Analysis of Airflow in Upper Airway under Light and Heavy Breathing Conditions for a Realistic Patient Having Obstructive Sleep Apnea. Computer Modeling in Engineering & Sciences. 128: 583-604. DOI: https://doi.org/10.32604/cmes.2021.015549

Riazuddin, V.N., Zubair, M., Abdullah, M.Z., Ismail, R., Shuaib, I.L., Hamid, S.A., Ahmad, K.A., 2010. Numerical Study of Inspiratory and Expiratory Flow in a Human Nasal Cavity. Journal of Medical and Biological Engineering. 31(3): 201-206. DOI: https://doi.org/10.5405/jmbe.781

Li, L., Wu, W., Yan, G., Liu, L., Liu, H., Li, G., Li, J., Liu, D., 2016. Analogue simulation of pharyngeal airflow response to Twin Block treatment in growing patients with Class II1 and mandibular retrognathia. Scientific Reports. 6:26012. DOI: https://doi.org/10.1038/srep26012

Issakhov, A., Mardieyeva, A., Zhandaulet, Y., Abylkassymova, A., 2021. Numerical study of air flow in the human respiratory system with rhinitis. Case Studies in Thermal Engineering. 26 (2001). DOI: https://doi.org/10.1016/j.csite.2021.101079

Doorly, D.J., Taylor, D.J., Schroter, R.C., 2008. Respiratory Physiology & Neurobiology. Mechanics of airflow in the human nasal airway. 163 (2008) 100–110. DOI: https://doi.org/10.1016/j.resp.2008.07.027

Park, S.B., Khattar, D., 2022. Tachypnea. Treasure Island (FL): StatPearls Publishing. PMID: 31082106

Suga, H., Iwasaki, T., Mishima, K., Nakano, H., Ueyama, Y., Yamasaki, Y., 2021. Evaluation of the effect of oral appliance treatment on upper-airway ventilation conditions in obstructive sleep apnea using computational fluid dynamics. Cranio. 39(3): 209-217. DOI: https://doi.org/10.1080/08869634.2019.1596554

Ahookhosh, K., Saidi, M., Aminfar, H., Mohammadpourfard, M., Hamishehkar, H., Yaqoubi, S., 2020. Dry powder inhaler aerosol deposition in a model of tracheobronchial airways: Validating CFD predictions with in vitro data. International Journal of Pharmaceutics. 587 (2020) 119599. DOI: https://doi.org/10.1016/j.ijpharm.2020.119599

Srivastav, V.K., Paul, A.R., Jain, A., 2019. Capturing the wall turbulence in CFD simulation of human respiratory tract. Mathematics and Computers in Simulation. 160: 23-38. DOI: https://doi.org/10.1016/j.matcom.2018.11.019

Cai, H., Xu, C., Xue, H., Guo, Y., Su, L., Gao, X., 2022. Upper airway flow characteristics of childhood obstructive sleep apnea‑hypopnea syndrome. Scientific Reports. 12(2022): 7386. DOI: https://doi.org/10.1038/s41598-022-10367-w

Bates, A.J., Doorly, Cetto, R., Calmet, H., Gambaruto, A.M., Tolley, N.S., Houzeaux, G., Schroter, R.C., 2014. Dynamics of airflow in a short inhalation. Bioengineering, biomedical engineering,biomechanics. 12: 20140880. DOI: http://dx.doi.org/10.1098/rsif.2014.0880

Wang, L., Ge, H., Chen, L., Hajipour, A., Feng, Y., Cui, X., 2021. LES study on the impact of airway deformation on the airflow structures in the idealized mouth–throat model. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 44(2022): 23 DOI: https://doi.org/10.1007/s40430-021-03324-7

Guo, Y., Wei, J., Ou, C., Liu, L., Sadrizadeh, S., Jin, T., Tang, L., Zhang, Y., Li, Y., 2020. Deposition of droplets from the trachea or bronchus in the respiratory tract during exhalation: A steady-state numerical investigation. Aerosol Science and Technology. 54(8): 869-879 DOI: https://doi.org/10.1080/02786826.2020.1772459

Downloads

Published

2023-05-31

Issue

Section

Articles

How to Cite

COMPUTATIONAL FLUID DYNAMICS ANALYSIS ON OVERWEIGHT SLEEP APNEA PATIENT UNDER VARIOUS BREATHING FLOW PATTERNS. (2023). ASEAN Engineering Journal, 13(2), 69-79. https://doi.org/10.11113/aej.v13.18864