COMPUTATIONAL FLUID DYNAMICS ANALYSIS ON OVERWEIGHT SLEEP APNEA PATIENT UNDER VARIOUS BREATHING FLOW PATTERNS
DOI:
https://doi.org/10.11113/aej.v13.18864Keywords:
Obstructive Sleep Apnea, Computational Fluid Dynamics, Turbulent Kinetic Energy, Reynold's Averaged Navier StokeAbstract
Obstructive Sleep Apnea (OSA) is a breathing disorder that occurs during sleep. This syndrome affects numerous people, especially those with abnormal body fat composition parameters such as body mass index (BMI) of more than 25 kg/m2 (overweight & obesity). OSA ensues when the tongue and soft palate muscles in a relaxed condition move towards gravity when the patient is in a supine position; this causes narrowing and blockage on the upper airway affecting breathing. There are several treatments for OSA, including upper airway surgery. A better understanding of airflow characteristics will assist ENT surgeons in identifying the blockage area. This paper examines airflow characteristics of the upper airway for overweight sleep apnea patients. The narrow and blockage area on the respiratory tract causes turbulence formation that is evaluated using Computational Fluid Dynamic (CFD) based on an actual parameter of the 3D model obtained by CT scan image result. Reynold’s averaged Navier-Stoke (RANS) equation and turbulent model, k-ω shear stress transport (SST), were applied. Airflow fluctuation was characterized by crucial parameters such as velocity, pressure, and turbulent kinetic energy (TKE). The result shows that the narrow cross-sectional area of the airway causes accretion of the velocity and pressure in the pharyngeal airway. The increasing airflow parameter results in high turbulent kinetic energy (TKE) that will determine the severity level of OSA patients. Investigating airflow characteristics in overweight OSA patients will help the medical practitioner validate the narrow and blockage area for the surgery.
References
Kushida, C.A., Culebras, A., Ivanenko, A., Watson, N.F., 2007. Obstructive sleep apnea: Pathophysiology, comorbidities, and consequences. New York, N.Y: Library of Congress Cataloging-in-Publication Data. 3(1):1-3. DOI: https://doi.org/10.3109/9781420020458
Benjafield, A.V., Ayas, U.T., Eastwood, P.R., Heinzer, R., Ip, M.S.M., Morrell, M.J., Nunez, C.M., Patel, S.R., Penzel, T., Pépin, J.-L.D., 2019. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Author manuscript. 7(8): 687–698. DOI : https://doi.org/10.1016/S2213-2600(19)30198-5
Levitzky, M.G., 2008. Using the pathophysiology of obstructive sleep apnea to teach cardiopulmonary integration. Department of Physiology. New Orleans, Louisiana: Louisiana State University Health Sciences Center. 32: 196–202. DOI: https://doi.org/10.1152/advan.90137.2008
Jehan, S., Zizi, F., Pandi-Perumal, S.R., Wall, S., Auguste, E., Myers, A.K., Jean-Louis, G., McFarlane, S.I., 2017. Obstructive Sleep Apnea and Obesity: Implications for Public Health. HHS Public Access. 1(4):93-99. DOI: https://doi.org/10.15406/smdij.2017.01.00019
Wolk, R., Shamsuzzaman, A.S.M., Somers, V.K., 2003. Obesity, Sleep Apnea, and Hypertension. American Heart Association. 42:1067-1074. DOI: https://doi.org/10.1161/01.HYP.0000101686.98973.A3
Chung, J., Lam, M., Choi, J., Mak, W., Sau, M., Ip, M., 2011. Obesity, obstructive sleep apnoea and metabolic syndrome. Asian Pacific Society of Respirology. 17: 223–236. DOI: https://doi.org/10.1111/j.1440-1843.2011.02081.x
Godoy, I.R.B., Martinez-Salazar, E.L., Eajazi, A., Genta, P.R., Bredella, M.A., Torriani, M., 2016. Fat accumulation in the tongue is associated with male gender, abnormal upper airway measures and whole-body adiposity. HHS Public Access. 65(11): 1657–1663. DOI: https://doi.org/10.1016/j.metabol.2016.08.008.
Wang, S.H., Keenan, B.T., Wiemken, A., Zang, Y., Staley, B., Sarwer, D.B., Torigian, D.A., Williams, N., Pack, A.I., Schwab, R.J., 2019. Effect of Weight Loss on Upper Airway Anatomy and the Apnea–Hypopnea Index. Respiratory and Critical Care Medicine. 201(6): 718–727 DOI: https://doi.org/10.1164/rccm.201903-0692OC
Shang, Y., Hu, B., Yin, G., Fu, S., Ye, J., 2021. Computational fluid dynamics investigation on effects of uvulopalatopharyngoplasty on upper airway stability. AIP Advances. 11 (6): 065225. DOI: https://doi.org/10.1063/5.0053326
Ogawa, T., Enciso, R., Shintaku, W.H., Clark, G.T., 2007. Evaluation of cross-section airway configuration of obstructive sleep apnea. NIH Public Access. 103(1), 102–108.DOI: https://doi.org/10.1016/j.tripleo.2006.06.008
W.M.Faizal, Ghazali, N.N.N., Khor, C.Y., M.Z.Zainon, Ibrahim, N.B., Razif, R.M., 2021. Turbulent Kinetic Energy Of Flow During Inhale And Exhale To Characterize The Severity Of Obstructive Sleep Apnea Patient. Research Square. Version 1. DOI: https://doi.org/10.21203/rs.3.rs-1102041/v1
Jeong, S.J., Kim, W.S., Sung, S.J., 2007. Numerical investigation on the flow characteristics and aerodynamic force of the upper airway of patient with obstructive sleep apnea using computational fluid dynamics. Medical Engineering & Physiccs. 29(2007): 637-651. DOI: https://doi.org/10.1016/j.medengphy.2006.08.017
Mylavarapu, G., Murugappan, S., Mihaescu, M., Kalra, M., Khosla, S., Gutmark, E., 2009. Validation of computational fluid dynamics methodology used for human upper airway flow simulations. Journal of Biomech. 42: 1553-1559. DOI: https://doi.org/10.1016/j.jbiomech.2009.03.035
Powell, N.B., Mihaescu, M., Mylavarapu, G., Weaver, E.M., Guilleminault, C., Gutmark, E., 2011. Patterns in pharyngeal airflow associated with sleep-disordered breathing. Sleep Medicine. 12: 966-974. DOI: https://doi.org/10.1016/j.sleep.2011.08.004
M. Faizal, W., N. N. Ghazali, N., Y. Khor, C., Z. Zainon, M., Anjum Badruddin, I., Kamangar, S., Binti Ibrahim, N., Mohd Razi, R., 2021. Computational Analysis of Airflow in Upper Airway under Light and Heavy Breathing Conditions for a Realistic Patient Having Obstructive Sleep Apnea. Computer Modeling in Engineering & Sciences. 128: 583-604. DOI: https://doi.org/10.32604/cmes.2021.015549
Riazuddin, V.N., Zubair, M., Abdullah, M.Z., Ismail, R., Shuaib, I.L., Hamid, S.A., Ahmad, K.A., 2010. Numerical Study of Inspiratory and Expiratory Flow in a Human Nasal Cavity. Journal of Medical and Biological Engineering. 31(3): 201-206. DOI: https://doi.org/10.5405/jmbe.781
Li, L., Wu, W., Yan, G., Liu, L., Liu, H., Li, G., Li, J., Liu, D., 2016. Analogue simulation of pharyngeal airflow response to Twin Block treatment in growing patients with Class II1 and mandibular retrognathia. Scientific Reports. 6:26012. DOI: https://doi.org/10.1038/srep26012
Issakhov, A., Mardieyeva, A., Zhandaulet, Y., Abylkassymova, A., 2021. Numerical study of air flow in the human respiratory system with rhinitis. Case Studies in Thermal Engineering. 26 (2001). DOI: https://doi.org/10.1016/j.csite.2021.101079
Doorly, D.J., Taylor, D.J., Schroter, R.C., 2008. Respiratory Physiology & Neurobiology. Mechanics of airflow in the human nasal airway. 163 (2008) 100–110. DOI: https://doi.org/10.1016/j.resp.2008.07.027
Park, S.B., Khattar, D., 2022. Tachypnea. Treasure Island (FL): StatPearls Publishing. PMID: 31082106
Suga, H., Iwasaki, T., Mishima, K., Nakano, H., Ueyama, Y., Yamasaki, Y., 2021. Evaluation of the effect of oral appliance treatment on upper-airway ventilation conditions in obstructive sleep apnea using computational fluid dynamics. Cranio. 39(3): 209-217. DOI: https://doi.org/10.1080/08869634.2019.1596554
Ahookhosh, K., Saidi, M., Aminfar, H., Mohammadpourfard, M., Hamishehkar, H., Yaqoubi, S., 2020. Dry powder inhaler aerosol deposition in a model of tracheobronchial airways: Validating CFD predictions with in vitro data. International Journal of Pharmaceutics. 587 (2020) 119599. DOI: https://doi.org/10.1016/j.ijpharm.2020.119599
Srivastav, V.K., Paul, A.R., Jain, A., 2019. Capturing the wall turbulence in CFD simulation of human respiratory tract. Mathematics and Computers in Simulation. 160: 23-38. DOI: https://doi.org/10.1016/j.matcom.2018.11.019
Cai, H., Xu, C., Xue, H., Guo, Y., Su, L., Gao, X., 2022. Upper airway flow characteristics of childhood obstructive sleep apnea‑hypopnea syndrome. Scientific Reports. 12(2022): 7386. DOI: https://doi.org/10.1038/s41598-022-10367-w
Bates, A.J., Doorly, Cetto, R., Calmet, H., Gambaruto, A.M., Tolley, N.S., Houzeaux, G., Schroter, R.C., 2014. Dynamics of airflow in a short inhalation. Bioengineering, biomedical engineering,biomechanics. 12: 20140880. DOI: http://dx.doi.org/10.1098/rsif.2014.0880
Wang, L., Ge, H., Chen, L., Hajipour, A., Feng, Y., Cui, X., 2021. LES study on the impact of airway deformation on the airflow structures in the idealized mouth–throat model. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 44(2022): 23 DOI: https://doi.org/10.1007/s40430-021-03324-7
Guo, Y., Wei, J., Ou, C., Liu, L., Sadrizadeh, S., Jin, T., Tang, L., Zhang, Y., Li, Y., 2020. Deposition of droplets from the trachea or bronchus in the respiratory tract during exhalation: A steady-state numerical investigation. Aerosol Science and Technology. 54(8): 869-879 DOI: https://doi.org/10.1080/02786826.2020.1772459