REVOLUTIONIZING POWER TRANSFORMER FAULT DIAGNOSIS THROUGH COGNITIVE ARTIFICIAL INTELLIGENCE AND DISSOLVED GAS ANALYSIS INTEGRATION

Authors

  • Phoumsavath Souvannalath Department of Electrical Engineering, Faculty of Engineering, Chiang Mai University (CMU), 50200, Chiang Mai, Thailand
  • Suttichai Premrudeepreechacharn Department of Electrical Engineering, Faculty of Engineering, Chiang Mai University (CMU), 50200, Chiang Mai, Thailand
  • Kanchit Ngamsanroaj Electricity Generating Authority of Thailand, Nonthaburi, Thailand

DOI:

https://doi.org/10.11113/aej.v14.19506

Keywords:

Power transformer diagnosis, Cognitive artificial intelligence, Dissolved gas analysis

Abstract

The research introduces a cognitive artificial intelligence (CAI) model that leverages dissolved gas analysis (DGA) to investigate power transformer faults. Conventional fault interpretation methods using DGA are limited in accuracy and uncertainty. In response, the proposed CAI model utilizes cognitive learning and direct interaction to achieve remarkably accurate fault identification without the need for supervised training. By extracting fault features through key gas ratio limitations. However, the CAI model also has a gap in data perception due to the information sensory challenges. Using gas ratios based on the conventional fault interpretation methods in the latest study still limited data perception of the CAI model to only three or four gas ratios. Thus, this study aims to increase data perception by extracting fault features through ten gas ratio limitations. The proposed CAI model's performance is validated, outperforming traditional methods like the Duval triangle method, Duval pentagon method, Doernenburg ratio method, and Roger ratio method, as well as common AI approaches including artificial neuron network, long short-term memory, nearest neighbor classifiers, support vector machine, ensemble classifiers, and decision trees. Notably, the CAI model's success rate in fault type identification stands at an impressive 98.04%. A distinctive trait of the CAI model is its autonomous knowledge accumulation and enhancement, enabled by inferring-fusion information and sensor-based knowledge integration. This intrinsic learning ability further contributes to its exceptional fault diagnosis accuracy. The proposed CAI model showcases promising potential for revolutionizing power transformer fault investigation and diagnosis, mitigating unplanned outages, and ultimately bolstering power system reliability.

References

Golarz, J. 2016. Understanding dissolved gas analysis (DGA) techniques and interpretations. 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D). 1-5. doi: 10.1109/TDC.2016.7519852.

ASTM D3612-02. 2009. Standard Test Method for Analysis of Gases Dissolved in Electrical Insulating Oil by Gas Chromatography . ASTM Standard.

Rogers, R. R. 1978. IEEE and IEC codes to interpret incipient faults in transformers, using gas in oil analysis. IEEE transactions on electrical insulation, 5:349-354. doi: 10.1109/TEI.1978.298141.

IEEE Std C57.104-1978. 1978. Guide for the Detection and Determination of Generated Gases in Oil-Immersed Transformers and Their Relation to the Serviceability of the Equipment. IEEE Standard.

IEC 60599:1999. 1999. Interpretation of the analysis of gases in transformers and other Oil filled electrical equipment’s in service. IEC Standard.

Duval, M. 2008. The duval triangle for load tap changers, non-mineral oils and low temperature faults in transformers. IEEE Electrical Insulation Magazine, 24(6): 22-29.

Duval, M., & Lamarre, L. 2014. The duval pentagon-a new complementary tool for the interpretation of dissolved gas analysis in transformers. IEEE Electrical Insulation Magazine, 30(6): 9-12. doi: 10.1109/MEI.2014.6943428.

Mansour, D. E. A. 2015. Development of a new graphical technique for dissolved gas analysis in power transformers based on the five combustible gases. IEEE Transactions on Dielectrics and Electrical Insulation, 22(5): 2507-2512. doi: 10.1109/TDEI.2015.004999.

Sarma, D. S., & Kalyani, G. N. S. 2004. ANN approach for condition monitoring of power transformers using DGA. 2004 IEEE Region 10 Conference TENCON 2004, 444-447. doi: 10.1109/TENCON.2004.1414803.

Seifeddine, S., Khmais, B., & Abdelkader, C. 2012. Power transformer fault diagnosis based on dissolved gas analysis by artificial neural network. 2012 first international conference on renewable energies and vehicular technology, 230-236. doi: 10.1109/REVET.2012.6195276.

Zakaria, F., Johari, D., & Musirin, I. 2012. Artificial neural network (ANN) application in dissolved gas analysis (DGA) methods for the detection of incipient faults in oil-filled power transformer. 2012 IEEE International Conference on Control System, Computing and Engineering, 328-332. doi: 10.1109/ICCSCE.2012.6487165.

Vani, A., & Murthy, P. S. R. C. 2014. An adaptive neuro fuzzy inference system for fault detection in transformers by analyzing dissolved gases. 2014 The 1st International Conference on Information Technology, Computer, and Electrical Engineering, 328-333. doi: 10.1109/ICITACEE.2014.7065766.

Kari, T., Gao, W., Zhao, D., Zhang, Z., Mo, W., Wang, Y., & Luan, L. 2018. An integrated method of ANFIS and Dempster-Shafer theory for fault diagnosis of power transformer. IEEE Transactions on Dielectrics and Electrical Insulation, 25(1): 360-371. doi: 10.1109/TDEI.2018.006746.

Tightiz, L., Nasab, M. A., Yang, H., & Addeh, A. 2020. An intelligent system based on optimized ANFIS and association rules for power transformer fault diagnosis. ISA transactions, 103: 63-74. https://doi.org/10.1016/j.isatra.2020.03.022

Dai, J., Song, H., Sheng, G., & Jiang, X. 2018. LSTM networks for the trend prediction of gases dissolved in power transformer insulation oil. 2018 12th International conference on the properties and applications of dielectric materials (ICPADM), 666-669. doi: 10.1109/ICPADM.2018.8401130.

Lin, J., Su, L., Yan, Y., Sheng, G., Xie, D., & Jiang, X. 2018. Prediction method for power transformer running state based on LSTM_DBN network. Energies, 11(7): 1880. https://doi.org/10.3390/en11071880.

Skydt, M. R., Bang, M., & Shaker, H. R. 2021. A probabilistic sequence classification approach for early fault prediction in distribution grids using long short-term memory neural networks. Measurement, 170: 108691. https://doi.org/10.1016/j.measurement.2020.108691

Bacha, K., Souahlia, S., & Gossa, M. 2012. Power transformer fault diagnosis based on dissolved gas analysis by support vector machine. Electric power systems research, 83(1): 73-79. https://doi.org/10.1016/j.epsr.2011.09.012

Mehta, A. K., Sharma, R. N., Chauhan, S., & Saho, S. 2013. Transformer diagnostics under dissolved gas analysis using Support Vector Machine. 2013 International Conference on Power, Energy and Control (ICPEC), 181-186. doi: 10.1109/ICPEC.2013.6527647.

Souza, F. R., & Ramachandran, B. 2016. Dissolved gas analysis to identify faults and improve reliability in transformers using support vector machines. 2016 Clemson University Power Systems Conference (PSC), 1-4. doi: 10.1109/PSC.2016.7462827.

Yan-Ming, M., Qian-Yun, Y., & Ding, W. R. 2020. Fault diagnosis of transformer based on W-FCM. 2020 7th International Forum on Electrical Engineering and Automation (IFEEA), 339-342. doi: 10.1109/IFEEA51475.2020.00077.

Li, E., Wang, L., Song, B., & Jian, S. 2018. Improved fuzzy C-means clustering for transformer fault diagnosis using dissolved gas analysis data. Energies, 11(9): 2344. https://doi.org/10.3390/en11092344.

Misbahulmunir, S., Ramachandaramurthy, V. K., & Thayoob, Y. H. M. 2020. Improved self-organizing map clustering of power transformer dissolved gas analysis using inputs pre-processing. IEEE Access, 8: 71798-71811.

Cui, W., Chu, M., Ding, C., Wang, Y., Wang, M., & Liu, L. 2021. Research on The Fault Diagnosis Method of Oil-Immersed Transformers Based on The Improved DBSCAN Algorithm. 2021 China Automation Congress (CAC), 5171-5176. doi: 10.1109/CAC53003.2021.9728677.

Bachri, K. O., Khayam, U., Soedjarno, B. A., Sumari, A. D. W., & Ahmad, A. S. 2019. Cognitive artificial-intelligence for doernenburg dissolved gas analysis interpretation. Telkomnika (Telecommunication Computing Electronics and Control), 17(1): 268-274. http://doi.org/10.12928/telkomnika.v17i1.11612.

Yaqin, E. N., & Khayam, U. 2021. Improvement of Application Cognitive Artificial Intelligence based on Doernenburg Ratio Method for Dissolved Gas Analysis Interpretation. 2021 International Conference on Electrical Engineering and Informatics (ICEEI), 1-5. doi: 10.1109/ICEEI52609.2021.9611122.

IEEE Std C57.104-1991. 2009. Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers. IEEE Standard.

IEC 60599:2015. 2015. Mineral oil-filled electrical equipment in service – Guidance on the interpretation of dissolved and free gases analysis. IEC Standard.

Sumari, A. D. W., Ahmad, A. S., Wuryandari, A. I., & Sembiring, J. 2010. Constructing brain-inspired knowledge-growing system: a review and a design concept. 2010 International Conference on Distributed Frameworks for Multimedia Applications, 1-7.

Duval, M., & DePabla, A. 2001. Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC 10 databases. IEEE Electrical Insulation Magazine, 17(2): 31-41. doi: 10.1109/57.917529.

Zhang, G., Yasuoka, K., Ishii, S., Yang, L., & Yan, Z. 1999. Application of fuzzy equivalent matrix for fault diagnosis of oil-immersed insulation. Proceedings of 1999 IEEE 13th International Conference on Dielectric Liquids (ICDL'99)(Cat. No. 99CH36213), 400-403. doi: 10.1109/ICDL.1999.798957.

Chen, A.-P., & Lin, C. C. 2001. Fuzzy approaches for fault diagnosis of transformers. Fuzzy Sets and Systems, 118(1): 139-151. https://doi.org/10.1016/S0165-0114(99)00115-3

Bin, S., Ping, Y., Yunbai, L., & Xishan, W. 2002. Study on the fault diagnosis of transformer based on the grey relational analysis. Proceedings. International Conference on Power System Technology, 2231-2234. doi: 10.1109/ICPST.2002.1047179.

Castro, A. R. G., & Miranda, V. 2005. Knowledge discovery in neural networks with application to transformer failure diagnosis. IEEE Transactions on Power Systems, 20(2): 717-724. doi: 10.1109/TPWRS.2005.846074.

Lv, G., Cheng, H., Zhai, H., & Dong, L. 2005. Fault diagnosis of power transformer based on multi-layer SVM classifier. Electric power systems research, 75(1): 9-15. https://doi.org/10.1016/j.epsr.2004.07.013

Yong-Li, Z., & Lan-qin, G. 2006. Transformer fault diagnosis based on naive Bayesian classifier and SVR. TENCON 2006-2006 IEEE Region 10 Conference, 1-4. doi: 10.1109/TENCON.2006.343895.

Hao, X., & Cai-Xin, S. 2007. Artificial immune network classification algorithm for fault diagnosis of power transformer. IEEE Transactions on Power Delivery, 22(2): 930-935. doi: 10.1109/TPWRD.2007.893182.

Sun, Y. J., Zhang, S., Miao, C. X., & Li, J. M. 2007. Improved BP neural network for transformer fault diagnosis. Journal of China University of Mining and Technology, 17(1): 138-142.

Tang, W. H., Lu, Z., & Wu, Q. H. 2008. A bayesian network approach to power system asset management for transformer dissolved gas analysis. 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, 1460-1466. doi: 10.1109/DRPT.2008.4523635.

Yadaiah, N., & Ravi, N. 2011. Internal fault detection techniques for power transformers. Applied Soft Computing, 11(8): 5259-5269. https://doi.org/10.1016/j.asoc.2011.05.034.

Agrawal, S., & Chandel, A. K. 2012. Transformer incipient fault diagnosis based on probabilistic neural network. 2012 Students Conference on Engineering and Systems, 1-5. doi: 10.1109/SCES.2012.6199110.

Mansour, D. E. A. 2015. Development of a new graphical technique for dissolved gas analysis in power transformers based on the five combustible gases. IEEE Transactions on Dielectrics and Electrical Insulation, 22(5): 2507-2512. doi: 10.1109/TDEI.2015.004999.

Rajabimendi, M., & Dadios, E. P. 2012. A hybrid algorithm based on neural-fuzzy system for interpretation of dissolved gas analysis in power transformers. TENCON 2012 IEEE region 10 conference, 1-6. doi: 10.1109/TENCON.2012.6412171.

Souahlia, S., Bacha, K., & Chaari, A. 2012. MLP neural network-based decision for power transformers fault diagnosis using an improved combination of Rogers and Doernenburg ratios DGA. International Journal of Electrical Power & Energy Systems, 43(1): 1346-1353. https://doi.org/10.1016/j.ijepes.2012.05.067.

Ghoneim, S., & Merabtine, N. 2013. Early stage transformer fault detection based on expertise method. International Journal of Electrical Electronics and Telecommunication Engineering, 44(2): 1289-1294.

Ibrahim, M. M., Sayed, M. M., & El-Zahab, E. A. 2014. Diagnosis of power transformer incipient faults using fuzzy logic-IEC based approach. 2014 IEEE International Energy Conference (ENERGYCON), 242-245. doi: 10.1109/ENERGYCON.2014.6850435.

Liu, Z. X., Song, B., Li, E. W., Mao, Y., & Wang, G. L. 2015. Study of " code absence" in the IEC three-ratio method of dissolved gas analysis. IEEE Electrical Insulation Magazine, 31(6): 6-12. doi: 10.1109/MEI.2015.7303257.

Gouda, O. E., Saleh, S. M., & El-Hoshy, S. H. 2016. Power transformer incipient faults diagnosis based on dissolved gas analysis. TELKOMNIKA Indonesian J. Electr. Eng, 17(1): 10-16.

Taha, I. B., Ghoneim, S. S., & Zaini, H. G. 2016. A fuzzy diagnostic system for incipient transformer faults based on DGA of the insulating transformer oils. International Review of Electrical Engineering (IREE), 11(3): 305-313.

Illias, H. A., & Chai, X. R. 2016. Hybrid modified evolutionary particle swarm optimisation-time varying acceleration coefficient-artificial neural network for power transformer fault diagnosis. Measurement, 90: 94-102. https://doi.org/10.1016/j.measurement.2016.04.052.

Li, J., Zhang, Q., Wang, K., Wang, J., Zhou, T., & Zhang, Y. 2016. Optimal dissolved gas ratios selected by genetic algorithm for power transformer fault diagnosis based on support vector machine. IEEE Transactions on Dielectrics and Electrical Insulation, 23(2): 1198-1206. doi: 10.1109/TDEI.2015.005277.

Malik, H., & Mishra, S. 2016. Application of gene expression programming (GEP) in power transformers fault diagnosis using DGA. IEEE Transactions on Industry Applications, 52(6): 4556-4565. doi: 10.1109/TIA.2016.2598677.

Ngwenyama, M. K., & Gitau, M. N. 2024. Discernment of transformer oil stray gassing anomalies using machine learning classification techniques. Scientific Reports, 14(1): 376.

Ghoneim, S. S., & Taha, I. B. 2016. A new approach of DGA interpretation technique for transformer fault diagnosis. International Journal of Electrical Power & Energy Systems, 81: 265-274.

Faiz, J., & Soleimani, M. 2017. Dissolved gas analysis evaluation in electric power transformers using conventional methods a review. IEEE Transactions on Dielectrics and Electrical Insulation, 24(2): 1239-1248.

Peimankar, A., Weddell, S. J., Jalal, T., & Lapthorn, A. C. 2017. Evolutionary multi-objective fault diagnosis of power transformers. Swarm and Evolutionary Computation, 36: 62-75. https://doi.org/10.1016/j.swevo.2017.03.005.

Mharakurwa, E. T., Nyakoe, G. N., & Akumu, A. O. 2019. Power transformer fault severity estimation based on dissolved gas analysis and energy of fault formation technique. Journal of Electrical and Computer Engineering, 2019(1): 9674054. https://doi.org/10.1155/2019/9674054.

Zeng, B., Guo, J., Zhu, W., Xiao, Z., Yuan, F., & Huang, S. 2019. A transformer fault diagnosis model based on hybrid grey wolf optimizer and LS-SVM. Energies, 12(21): 4170. https://doi.org/10.3390/en12214170

Kirkbas, A., Demircali, A., Koroglu, S., & Kizilkaya, A. 2020. Fault diagnosis of oil-immersed power transformers using common vector approach. Electric Power Systems Research, 184: 106346. https://doi.org/10.1016/j.epsr.2020.106346.

Liu, Y., Song, B., Wang, L., Gao, J., & Xu, R. 2020. Power transformer fault diagnosis based on dissolved gas analysis by correlation coefficient-DBSCAN. Applied Sciences, 10(13): 4440. https://doi.org/10.3390/app10134440.

Naganathan, G. S., Senthilkumar, M., Aiswariya, S., Muthulakshmi, S., Riyasen, G. S., & Priyadharshini, M. M. 2021. WITHDRAWN: Internal fault diagnosis of power transformer using artificial neural network. https://doi.org/10.1016/j.matpr.2021.02.206.

Nanfak, A., Eke, S., Kom, C. H., Mouangue, R., & Fofana, I. 2021. Interpreting dissolved gases in transformer oil: A new method based on the analysis of labelled fault data. IET Generation, Transmission & Distribution, 15(21): 3032-3047. https://doi.org/10.1049/gtd2.12239.

Kherif, O., Benmahamed, Y., Teguar, M., Boubakeur, A., & Ghoneim, S. S. 2021. Accuracy improvement of power transformer faults diagnostic using KNN classifier with decision tree principle. IEEE Access, 9: 81693-81701. doi: 10.1109/ACCESS.2021.3086135.

Taha, I. B., Ibrahim, S., & Mansour, D. E. A. 2021. "Power transformer fault diagnosis based on DGA using a convolutional neural network with noise in measurements," IEEE Access, 9: 111162-111170.

Wang, G., Xia, G., Su, Z., Dai, Y., & Lu, L. 2021. A Fault Diagnosis Method of Power Transformer Based on Improved DDAG-SVM. 2021 IEEE 2nd China International Youth Conference on Electrical Engineering (CIYCEE), 1-5. doi: 10.1109/CIYCEE53554.2021.9676904.

Wu, Y., Sun, X., Zhang, Y., Zhong, X., & Cheng, L. 2021. A power transformer fault diagnosis method-based hybrid improved seagull optimization algorithm and support vector machine. IEEE Access, 10: 17268-17286. doi: 10.1109/ACCESS.2021.3127164.

Wu, Y., Sun, X., Dai, B., Yang, P., & Wang, Z. 2022. A transformer fault diagnosis method based on hybrid improved grey wolf optimization and least squares‐support vector machine. IET generation, transmission & distribution, 16(10): 1950-1963. https://doi.org/10.1049/gtd2.12405.

Ding, C., Ding, Q., Wang, Z., & Zhou, Y. 2022. Fault diagnosis of oil‐immersed transformers based on the improved sparrow search algorithm optimised support vector machine. IET Electric Power Applications, 16(9): 985-995. https://doi.org/10.1049/elp2.12204.

Feng, L., & Bo, Y. 2022. Intelligent fault diagnosis technology of power transformer based on Artificial Intelligence. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), 1968-1971. doi: 10.1109/ITOEC53115.2022.9734331.

Yi, L., Jiang, G., Zhang, G., Yu, W., Guo, Y., & Sun, T. 2022. A fault diagnosis method of oil-immersed transformer based on improved harris hawks optimized random forest. Journal of Electrical Engineering & Technology, 17(4): 2527-2540.

Li, E., Wang, L., & Song, B. 2019. Fault diagnosis of power transformers with membership degree. IEEE Access, 7: 28791-28798. doi: 10.1109/ACCESS.2019.2902299.

Li, Z. J., Chen, W. G., Shan, J., Yang, Z. Y., & Cao, L. Y. 2022. Enhanced distributed parallel firefly algorithm based on the Taguchi method for transformer fault diagnosis. Energies, 15(9): 3017. https://doi.org/10.3390/en15093017

Downloads

Published

2024-08-31

Issue

Section

Articles

How to Cite

REVOLUTIONIZING POWER TRANSFORMER FAULT DIAGNOSIS THROUGH COGNITIVE ARTIFICIAL INTELLIGENCE AND DISSOLVED GAS ANALYSIS INTEGRATION. (2024). ASEAN Engineering Journal, 14(3), 1-14. https://doi.org/10.11113/aej.v14.19506