GREEN SYNTHESIS AND CHARACTERIZATION OF FE DOPED TIO2 NANOPARTICLES USING LAWSONIA INERMIS LEAF AQUEOUS EXTRACTS AS REDUCTANT FOR PHOTOCATALYTIC ACTIVITY

Authors

  • Syamsutajri Syamsol Bahri Integrated Material Process, Advanced Materials and Manufacturing Centre, Institute Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia
  • Zawati Harun Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia
  • Wan Norhayati Wan Salleh Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Rosniza Hussin Integrated Material Process, Advanced Materials and Manufacturing Centre, Institute Integrated Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia
  • Nur Hanis Hayati Hairom Faculty of Technology Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia
  • Noor Hasliza Kamaruddin Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia
  • Hatijah Basri Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia
  • Nurul Izwanie Rasli Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia
  • Afiqah Rosman Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Riduan Jamaluddin Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis, 02600 Kangar, Perlis, Malaysia
  • Ainun Rahmahwati Ainuddin Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia

DOI:

https://doi.org/10.11113/aej.v13.19690

Keywords:

Fe doped TiO2, green synthesis, nanoparticles, plant extract, photocatalytic activity

Abstract

Recently, the improvement and advancement in synthesizing nanoparticles via eco-friendly technique have been intensively explored since the used conventional physical and chemical methods always associated to the intensive energy usage and toxic waste pollution Therefore, nanoparticles synthesized from green route technique has initiate an interest among researchers due to its clean and eco-friendliness approach. In this study, the Fe doped TiO2 were synthesized using lawsonia inermis aqueous leaf extracts that act as reducing agent as well as capping and stabilizing agent. The green synthesized powder was then calcined and characterized using XRD, FESEM, EDX, FTIR and UV-Vis while photocatalytic activity was evaluated based on photodegradation efficiency of methylene blue (MB). The new obtained green calcined powder was found to have a crystalline phase (anatase structure) with crystallite size, 6.79 nm identified by XRD. The FESEM test shows the average particle size of the green synthesized calcined Fe doped TiO2 is in the range of 54.5 nm with capping agent (phyto-constituents) authorized by FTIR spectra. From EDX analysis, Fe ions was successfully incorporated into TiO2 compound during synthesis process confirmed by the presence of Fe element. It was observed that the band gap energy for green calcined Fe doped TiO2 is approximately 2.66 eV. The green synthesized calcined Fe doped TiO2 sample presented the highest photocatalytic activity efficiency under uv light irradiation for 3 hour which is 92.2% with only 7.8% of MB remained, this value is slightly higher than that of commercial P25 powder which is 90.7%. In conclusion, the green synthesis technique of using lawsonia inermis as natural resources as reduction agent was able to produce nanoparticles Fe doped TiO2. Moreover, the properties of Fe doped TiO2 nanoparticles has strong potential to be used as a photocatalyst since this sustainable green synthesis technique able to produce better nanoparticles properties as compared to conventional synthesis.

References

M. N. Gallucci et al. 2017. Silver nanoparticles from leafy green extract of Belgian endive (Cichorium intybus L. var. sativus): Biosynthesis , characterization, and antibacterial activity. Materials Letter. 97: 98–101. DOI: https://doi.org/10.1016/j.matlet.2017.03.141

L. Wang, J. Xie, T. Huang, Y. Ma, and Z. Wu. 2017. Characterization of silver nanoparticles biosynthesized using crude polysaccharides of Psidium guajava L. leaf and their bioactivities. Materials. Letter. 208: 126–129, 2017. DOI : https://doi.org/10.1016/j.matlet.2017.05.014

N. Senthilkumar, E. Nandhakumar, P. Priya, D. Soni, M. Vimalan, and I. Vetha Potheher. 2017. Synthesis of ZnO nanoparticles using leaf extract of: Tectona grandis (L.) and their anti-bacterial, anti-arthritic, anti-oxidant and in vitro cytotoxicity activities. New Journal of Chemical. 41(18): 10347–10356. DOI: https://doi.org/10.1039/c7nj02664a

G. V Khade, M. B. Suwarnkar, N. L. Gavade, and K. M. Garadkar. 2015. Green synthesis of TiO2 and its photocatalytic activity. Journal of Materials Science: Materials in Electronics. 26: 3309–3315. DOI: https://doi.org/10.1007/s10854-015-2832-7

R. Dobrucka and J. Długaszewska. 2016. Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi Journal of Biological Sciences. 23(4): 517–523. DOI : https://doi: 10.1016/j.sjbs.2015.05.016

S. Ganesan et al. 2016. Green engineering of titanium dioxide nanoparticles using Ageratina altissima (L.) King & H.E. Robines. medicinal plant aqueous leaf extracts for enhanced photocatalytic activity. Annals of Phytomedicine: An International Journal. 5(2): 69–75. DOI : 10.21276/ap.2016.5.2.8.

M. K. Husam. 2018. The effect of pH , temperature on the green synthesis and biochemical activities of silver nanoparticles from Lawsonia inermis extract. Journal of Pharmaceutical Sciences and Research. 10(8): 2022–2026.

E. K. Baghkheirati et al. 2015. Modelling and optimization of Ag-nanoparticle biosynthesis mediated by walnut green husk extract using response surface methodology. Materials Letter. 4: 4–7. DOI: 10.4172/2169-0022.1000164

M. Sathishkumar, N. P. Subiraminiyam, and M. Sasikumar. 2017. Antibacterial activities of Zinc Sulphide nanoparticles using leaf extract of Lawsonia inermis. Nehrucolleges.Net. Retrieved January, 10, 2019 from http://www.nehrucolleges.net/images/pdf/2017/Antibacterial-activities-ECS.pdf

M. Sundrarajan, S. Jegatheeswaran, S. Selvam, R. Gowri, M. Balaji, and K. Bharathi. 2017. Green approach : Ionic liquid assisted synthesis of nanocrystalline ZnO in phyto medium and their antibacterial investigation. Materials Letter. 201: 31–34. DOI: 10.1016/j.matlet.2017.04.088

N. Jayarambabu, K. V. Rao, and V. Rajendar. 2018. Biogenic synthesis, characterization, acute oral toxicity studies of synthesized Ag and ZnO nanoparticles using aqueous extract of Lawsonia inermis. Materials Letter. 211: 43–47. DOI: https://doi.org/10.1016/j.matlet.2017.09.082

V. Mishra, R. Sharma, N. D. Jasuja, and D. K. Gupta. 2014. International Journal of Green and A Review on green synthesis of nanoparticles and evaluation of antimicrobial activity. International Journal of Green and Herbal Chemistry. 3(1): 81–94.

Z. Zang, X. Zeng, J. Du, M. Wang, and X. Tang. 2016. Femtosecond laser direct writing of microholes on roughened ZnO for output power enhancement of InGaN light-emitting diodes. Optic Letters. 41(15): 3463.

C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, and X. Tang. 2017. Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films. Solar Energy Materials and Solar Cells. 172: 341–346. DOI: https://doi.org/10.1016/j.solmat.2017.08.014.

V. Ravichandran, S. Vasanthi, S. Shalini, S. Adnan, and A. Shah. 2016. Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity. Materials Letter. 180: 264–267. DOI: https://doi.org/10.1016/j.matlet.2016.05.172.

G. . Rao, A. CH, V. . Rao, S. C. Chakra, and P. Tambur. 2015. Green Synthesis of TiO2 Nanoparticles using aloe vera extract. International Journal of Advanced Ressearch in Physical Science. 2: 28–34. DOI: https://doi.org/10.1002/yd.305

T. Rasheed, M. Bilal, H. M. N. Iqbal, and C. Li. 2017. Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids Surfaces B: Biointerfaces. 158: 408–415. DOI: https://doi.org/10.1016/j.colsurfb.2017.07.020

M. N. Nadagouda, G. Hoag, J. Collins, and R. S. Varma. 2009. Green synthesis of Au nanostructures at room temperature using biodegradable plant surfactants. American Chemical Society. 9(11): 4979–4983. DOI: https://doi.org/10.1021/cg9007685

S. A. Dahoumane, C. Jeffryes, M. Mechouet, and S. N. Agathos. 2017. Biosynthesis of inorganic nanoparticles: a rresh Look at the control of shape, size and composition. Bioengineering. 4(14): 1–16. doi: https://doi.org/10.3390/bioengineering4010014

M. Herlekar, S. Barve, and R. Kumar. 2014. Plant-mediated green synthesis of iron Nanoparticles. Journals of Nanoparticles. 2014: 1–9.

DOI: https://doi.org/10.1155/2014/140614

S. Saif, A. Tahir, and Y. Chen. 2016. Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials. 6(11): 209. DOI: https://doi.org/10.3390/nano6110209

S. Phromma, T. Wutikhun, P. Kasamechonchung, and T. Eksangsri. 2020. Effect of calcination temperature on photocatalytic activity of synthesized TiO2 nanoparticles via wet ball milling sol-gel method. Applied Sciences. 10(3): 993. DOI: https://doi.org/10.3390/app10030993

J. G. Mahy et al. 2016. Towards a large scale aqueous sol-gel synthesis of doped TiO2 : study of various metallic dopings for the photocatalytic degradation of p-nitrophenol. Journal of Photochemistry and Photobiology A: Chemistry. 329: 189–202. DOI: https://doi.org/10.1016/j.jphotochem.2016.06.029.

M. Gharagozlou and R. Bayati. 2015. Photocatalytic characteristics of single phase Fe-doped anatase TiO2 nanoparticles sensitized with vitamin B12. Materials Research Bulletin. 61: 340–347. DOI: https://doi.org/10.1016/j.materresbull.2014.10.043.

H. Teng, S. Xu, D. Sun, and Y. Zhang. 2013. Preparation of Fe-doped TiO2 nanotubes and their photocatalytic activities under visible light. International Journal of Photoenergy. 2013: 1-7. DOI: https://doi.org/10.1155/2013/981753.

M. R. D. Khaki, M. S. Shafeeyan, A. A. A. Raman, and W. M. A. W. Daud. 2017. Application of doped photocatalysts for organic pollutant degradation - a review. Journal of Environmental Management. 198: 78–94. DOI: https://doi.org/10.1016/j.jenvman.2017.04.099.

M. Crisan et al. 2015. Sol–gel iron-doped TiO2 nanopowders with photocatalytic activity. Applied Catalysis: A General. 504: 130–142. DOI: http://dx.doi.org/10.1016/j.apcata.2014.10.031

A. K. Jordão, M. D. Vargas, A. C. Pinto, F. D. C. Da Silva, and V. F. Ferreira. 2015. Lawsone in organic synthesis. Royal Scrience of Chemistry Advances. 5(83): 67909–67943. DOI: https://doi.org/10.1039/c5ra12785h.

SCCS (Scientific Committee on Consumer Safety). Opinion on Lawsonia inermis (Henna). September, 19, 2013.

DOI : https://doi.org/10.2772/71314.

M. A. R. Bhuiyan, A. Islam, A. Ali, and M. N. Islam. 2017. Color and chemical constitution of natural dye henna (Lawsonia inermis L) and its application in the coloration of textiles. Journal of Cleaner Production. 167: 14–22. DOI: https://doi.org/10.1016/j.jclepro.2017.08.142.

A. Nordmeier, J. Woolford, L. Celeste, and D. Chidambaram. 2017. Sustainable batch production of biosynthesized nanoparticles. Materials Letter. 191: 53–56. DOI: https://doi.org/10.1016/j.matlet.2017.01.032.

P. S. M. Kumar, A. P. Francis, and T. Devasena. 2014. Biosynthesized and chemically synthesized titania nanoparticles : comparative analysis of antibacterial activity. Journal of Environmental Nanotechnoly. 3(3): 73–81. DOI: https://doi.org/10.13074/jent.2014.09.143098.

M. Cris, D. Cris, A. Ianculescu, I. Nit, B. Vasile, and C. Stan. 2015. Sol–gel iron-doped TiO2 nanopowders with photocatalytic activity. Applied Catalysis A: General. 504: 130–142.DOI: http://dx.doi.org/10.1016/j.apcata.2014.10.031[34] S. Mahshid, M. Askari, and M. S. Ghamsari. 2007. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. Journal of Materials Proessing Technology. 189: 296–300. DOI: https://doi.org/10.1016/j.jmatprotec.2007.01.040.

A. Gaber, M. A. A.- Rahim, and M. N. Abdel-salam. 2014. Influence of calcination temperature on the structure and porosity of nanocrystalline SnO2 synthesized by a conventional precipitation method. International Journal of Electrochemical Science. 9: 81–95. DOI: https://doi.org/10.1016/S1452-3981(23)07699-X

S. Sood, A. Umar, S. K. Mehta, and S. K. Kansal. 2015. Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds. Journal of Colloid and Interface Science. 450: 213–223. DO : https://doi.org/10.1016/j.jcis.2015.03.018.

V. Moradi, M. B. G. Jun, A. Blackburn, and R. A. Herring. 2018. Significant improvement in visible light photocatalytic activity of Fe doped TiO2 using an acid treatment process. Applied Surface Science. 427: 791–799.DOI : https://doi.org/10.1016/j.apsusc.2017.09.017.

J. A. Torres-Luna, N. R. Sanabria, and J. G. Carriazo. 2016. Powders of iron(III)-doped titanium dioxide obtained by direct way from a natural ilmenite. Powder Technology. 302: 254–260.nDOI : https://doi.org/10.1016/j.powtec.2016.08.056.

K. G. Rao, C. Ashok, K. V. Rao, C. Shilpa Chakra, and V. Rajendar. 2015. Synthesis of TiO2 nanoparticles from orange fruit waste. International. Journal of Multidiscipline Advanced Research Trends. 2(1): 82–90.

M. K. Husam. 2018. The effect of pH , temperature on the green synthesis and biochemical activities of silver nanoparticles from Lawsonia inermis extract. Journal of Pharmaceutical Scences and Research. 10(1): 2022–2026.

M.M.S, Sherifa, et al. 2015. The Importance of the chemical composition of henna tree Leaves ( Lawsonia inermis ) and its ability to eliminate tinea pedis , with reference to the extent of usage and storage in the Saudi Society, Taif, KSA. Journal of Pharmacy and Biological Sciences. 10(4): 23–29. DOI: https://doi.org/10.9790/3008-10442329.

S. C. G. K. Daniel, N. Mahalakshmi, J. Sandhiya, K. Nehru, and M. Sivakumar. 2013. Rapid synthesis of Ag nanoparticles using henna extract for the fabrication of photoabsorption enhanced dye sensitized solar cell ( PE- DSSC ). Advanced Materials Research. 678: 349–360. DOI: https://doi.org/10.4028/www.scientific.net/AMR.678.349.

A. Gupta, S. R. Bonde, S. Gaikwad, A. Ingle, A. K. Gade, and M. Rai. 2014. Lawsonia inermis-mediated synthesis of silver nanoparticles: activity against human pathogenic fungi and bacteria with special reference to formulation of an antimicrobial nanogel. IET Nanobiotechnology. 8(3): 172–178. DOI: https://doi.org/10.1049/iet-nbt.2013.0015.

I. Uddin, K. Ahmad, A. A. Khan, and M. A. Kazmi. 2017. Synthesis of silver nanoparticles using Matricaria recutita (Babunah) plant extract and its study as mercury ions sensor. Sensing Bio-Sensing Research. 16(2017): 62–67.nDOI : https://doi.org/10.1016/j.sbsr.2017.11.005.

I. Ganesh et al. 2012. Preparation and characterization of Fe-doped TiO2 powders for solar light response and photocatalytic applications. Processing and Application of Ceramics. 6(1): 21–36. DOI: https://doi.org/10.1016/j.matchemphys.2012.04.062.

H. Jensen et al. 2006. Determination of size distributions in nanosized powders by TEM, XRD, and SAXS. Journal of Experimental Nanosciences. 1(3): 355–373. DOI: https://doi.org/10.1080/17458080600752482.

S. Salwa, Z. Harun, F. Hafeez, and K. Nazri. 2019. Enhancing the performance of a hybrid porous polysulfone membrane impregnated with green Ag / AgO additives derived from the Parkia speciosa. Vacuum. 163: 301–311. DOI: https://doi.org/10.1016/j.vacuum.2019.02.034.

K. M. Teck and S. A. Ibrahim. 2016. Effect of fe addition towards TiO2 formation for photocatalytic activity. ARPN Journal of Engineering and Applied Sciences. 11(14): 8704–8709.

S. R. Senthilkumar and T. Sivakumar. 2014. Green tea ( Camellia Sinensis ) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. International Journal of Pharmacy and Pharmaceutical Sciences. 6(6): 461-465.

F. Zulkifli et al. 2017. The effect of concentration of Lawsonia inermis as a corrosion inhibitor for aluminum alloy in seawater. Advances in Physical Chemistry. 2017: 1-12. DOI: https://doi.org/10.1155/2017/8521623.

R. Kumar, P. Sharma, A. Bamal, S. Negi, and S. Chaudhary. 2017. A safe , efficient and environment friendly biosynthesis of silver nanoparticles using Leucaena leucocephala seed extract and its antioxidant , antimicrobial , antifungal activities and potential in sensing. Green Processing and Synthesis. 6: 449–459. DOI: https://doi.org/10.1515/gps-2016-0146

G. Rajakumar, A. A. Rahuman, B. Priyamvada, V. G. Khanna, D. K. Kumar, and P. J. Sujin. 2012. Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles,” Materials Letter. 68: 115–117. DOI: https://doi.org/10.1016/j.matlet.2011.10.038

G. Wang, L. Xu, J. Zhang, T. Yin, and D. Han. 2012. Enhanced photocatalytic activity of TiO2 powders (P25) via calcination treatment. International Journal of Photoenergy. 2012: 1-9. DOI : https://doi.org/10.1155/2012/265760.

S. Tabasideh, A. Maleki, B. Shahmoradi, E. Ghahremani, and G. McKay. 2017. Sonophotocatalytic degradation of diazinon in aqueous solution using iron-doped TiO2 nanoparticles. Separation and Purification Technology. 189: 186–192. DOI: https://doi.org/10.1016/j.seppur.2017.07.065.

W. Low and V. Boonamnuayvitay. 2013. Enhancing the photocatalytic activity of TiO2 co-doping of graphene Fe3+ ions for formaldehyde removal. Journal of Environmental Management. 127: 142–149. DOI : https://doi.org/10.1016/j.jenvman.2013.04.029.

T. Rasheed, M. Bilal, H. M. N. Iqbal, and C. Li. 2017. Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids and Surfaces B: Biointerfaces. 158(2017): 408–415. DOI: https://doi.org/10.1016/j.colsurfb.2017.07.020.

C. Liao, Y. Li, and S. C. Tjong. 2020. Visible-light active titanium dioxide nanomaterials with bactericidal properties. Nanomaterials. 10(1): 1-56. DOI : https://doi.org/10.3390/nano10010124.

S. Sagadevan. 2015. Investigation of the preparation and characterization of Fe-doped TiO2. Journal of Material Sciences and Engineering. 4(3): 4–7. DOI: https://doi.org/10.4172/2169-0022.1000164

F. Azeez et al. 2018. The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Scientific Reports. 8: 7104. DOI: https://doi.org/10.1038/s41598-018-25673-5.

Downloads

Published

2023-08-30

How to Cite

Syamsol Bahri, S., Harun, Z. ., Wan Salleh, W. N., Hussin, R. ., Hairom, N. H. H. ., Kamaruddin, N. H. ., … Ainuddin, A. R. . (2023). GREEN SYNTHESIS AND CHARACTERIZATION OF FE DOPED TIO2 NANOPARTICLES USING LAWSONIA INERMIS LEAF AQUEOUS EXTRACTS AS REDUCTANT FOR PHOTOCATALYTIC ACTIVITY. ASEAN Engineering Journal, 13(3), 141–152. https://doi.org/10.11113/aej.v13.19690

Issue

Section

Articles