• Aris Ansori Department of Mechanical engineering, Universitas Negeri Surabaya, Ketintang Street, 60231, Surabaya, Indonesia
  • I Made Arsana Department of Mechanical engineering, Universitas Negeri Surabaya, Ketintang Street, 60231, Surabaya, Indonesia
  • Indra Herlamba Siregar Department of Mechanical engineering, Universitas Negeri Surabaya, Ketintang Street, 60231, Surabaya, Indonesia
  • Priyo Heru Adiwibowo Department of Mechanical engineering, Universitas Negeri Surabaya, Ketintang Street, 60231, Surabaya, Indonesia
  • Subuh Isnur Haryuda Department of Electrical engineering, Universitas Negeri Surabaya, Ketintang Street, 60231, Surabaya, Indonesia



Rooftop solar PV, triangular, on-Grid, household scale, Techno, Economic


The use of solar PV as an alternative to fulfill household-scale electricity needs has begun to be widely developed. However, the problem of investment costs and the location of solar PV placement for household scale is still a challenge in its implementation. The construction model of rooftop solar PV can affect the investment cost and performance of solar PV. In this paper, the triangle model of rooftop solar PV on grid with PLN (PT. Perusahaan Listrik Negara) electricity network is studied in terms of technology and economics to determine the feasibility of implementing 900 VA household-scale power plants. Testing the application of solar PV technology under solar radiation conditions in the city of Surabaya, Indonesia as a case study. Calculation of electricity production, energy savings, energy sales, and energy purchases to determine technological feasibility as well Net Present Value (NPV), Benefit Cost Ratio (BCR), and Payback Period (PP) to determine the level of economic feasibility. The results of the research of 1,5 KWP (kilowatt peak) solar PV technology on a household scale are able to meet energy needs and reduce PLN electricity purchases to 0% and can sell electrical energy by 13.96% / year of the total electrical energy produced. In addition, the NPV, BCR with a value greater than zero, and PP of 8.6 is less than 15 years which is the service life of solar PV, so solar PV/ PLN on grid is feasible to be implemented for household scale power generation models.


M. K. Abdelrazik, S. E. Abdelaziz, M. F. Hassan, and T. M. Hatem. 2022. Climate action: Prospects of solar energy in Africa. Energy Reports 8: 11363–11377. doi: 10.1016/j.egyr.2022.08.252.

S. Y. Heng, Y. Asako, T. Suwa, L. K. Tan, N. B. Sharifmuddin, and J. O. Kamadinata. 2018. Performance of a small-scale solar cogeneration system in the equatorial zone of Malaysia. Energy Convers 184: 127–138. doi: 10.1016/j.enconman.2019.01.059.

Y. Tian and C. Y. Zhao. 2013. A review of solar collectors and thermal energy storage in solar thermal applications. Applied Energy 104: 538–553. doi: 10.1016/j.apenergy.2012.11.051.

E. Tarigan. 2020. Rooftop PV system policy and implementation study for a household in Indonesia. International Journal of Energy Economics and Policy. 10(5): 110–115. doi: 10.32479/ijeep.9539.

L. M. M. Myint, K. Hozumi, S. Saito, and P. Supnithi. 2022. Analysis of local geomagnetic index under the influence of equatorial electrojet (EEJ) at the equatorial Phuket geomagnetic station in Thailand. Advances in Space Research 70(5): 1429–1440. doi: 10.1016/j.asr.2022.06.024.

S. Freitas, C. Catita, P. Redweik, and M. C. Brito. 2015. Modelling solar potential in the urban environment: State-of-the-art review. Renewable and Sustainable Energy Reviews 41: 915–931. doi: 10.1016/j.rser.2014.08.060.

A. Ansori, B. Yunitasari, Soeryanto, and Muhaji, 2019. Environmentally Friendly Power Generation Technology with Solar PV-Biogas in Rural Areas of Eastern Java, IOP Conference Series: Earth and Environmental Science 239(1):1-10. doi: 10.1088/1755-1315/239/1/012030.

R. Syahputra and I. Soesanti. 2021. Renewable energy systems based on micro-hydro and solar photovoltaic for rural areas: A case study in Yogyakarta, Indonesia. Energy Reports 7: 472–490. doi: 10.1016/j.egyr.2021.01.015.

B. L. Miravet-Sánchez et al. 2022. Solar photovoltaic technology in isolated rural communities in Latin America and the Caribbean. Energy Reports 8:1238–1248. doi: 10.1016/j.egyr.2021.12.052.

A. Mebarki, A. Sekhri, A. Assassi, A. Hanafi, and B. Marir. 2022. CFD analysis of solar chimney power plant: Finding a relationship between model minimization and its performance for use in urban areas. Energy Reports. 8: 500–513. doi: 10.1016/j.egyr.2021.12.008.

M. A. McNeil, N. Karali, and V. Letschert. 2019. Forecasting Indonesia’s electricity load through 2030 and peak demand reductions from appliance and lighting efficiency. Energy for Sustainable Development 49: 65–77. doi: 10.1016/j.esd.2019.01.001.

Secretary General National Energy Council Team. 2019. Indonesia Energy Out Look 2019. Journal of Chemical Information and Modeling 53(9): 1689–1699.

Ministry of energy and mineral resources team. 2018. MEMR policy number 1827/2018. Indonesia:MEMR

A. J. Veldhuis and A. H. M. E. Reinders. 2013. Reviewing the potential and cost-effectiveness of grid-connected solar PV in Indonesia on a provincial level. Renewable and Sustainable Energy Reviews. 27: 315–324. doi: 10.1016/j.rser.2013.06.010.

I. Hernanda, R. Fairuz, and E. A. Setiawan. 2018. Techno economic analysis photovoltaic on-grid system Java bali to optimize PLN energy consumption. Environment, Energy and Earth Sciences 67: 1–5. doi: 10.1051/e3sconf/20186702050.

J. Windarta, S. Saptadi, Denis, D. A. Satrio, and J. S. Silaen. 2021. Technical and economical feasibility analysis on household-scale rooftop solar power plant design with on-grid system in semarang city. Edelweiss Applied Science and Technology 5(1): 14–20. doi: 10.33805/2576-8484.189.

C. B. Rudationo et al. 2021. Techno-economic Analysis of Rooftop Photovoltaic System (RPVS) using Thin-Frameless Solar Panels for Household Customers in Indonesia. Proceedings of the Pakistan Academy of Science Part A. 2021. 58:131–139. doi: 10.53560/PPASA(58-SP1)750.

A. Elmelegi, M. Aly, E. M. Ahmed, and A. G. Alharbi. 2018. A simplified phase-shift PWM-based feedforward distributed MPPT method for grid-connected cascaded PV inverters,” Solar Energy 187 :1-12. doi: 10.1016/j.solener.2019.05.021.

A. O. M. Maka, S. Salem, and M. 2021. Mehmood. Solar photovoltaic (PV) applications in Libya: Challenges, potential, opportunities and future perspectives. Cleaner Engineering and Technology 5: 100-267. doi: 10.1016/j.clet.2021.100267.

C. Robles-Algarín, V. Olivero-Ortíz, and D. Restrepo-Leal. 2022. Techno-Economic Analysis of MPPT and PWM Controllers Performance in Off-Grid PV Systems. International Journal of Energy Economics and Policy 12(6): 379-376. doi: 10.32479/ijeep.13567.

R. P. Narasipuram, C. Somu, R. T. Yadlapalli, and L. S. 2018. Simhadri.Efficiency analysis of maximum power point tracking techniques for photovoltaic systems under variable conditions. International Journal of Innovative Research in Computer and Communication Engineering 9(4): 230-240. doi: 10.1504/IJICA.2018.095812.

W. Obaid, A. K. Hamid, and C. Ghenai. 2019. Hybrid solar/diesel power system design for electric boat with MPPT system. International Energy Journal 19(1): 37-46.

A. El Hammoumi, S. Chtita, S. Motahhir, and A. El Ghzizal. 2022. Solar PV energy: From material to use, and the most commonly used techniques to maximize the power output of PV systems: A focus on solar trackers and floating solar panels. Energy Reports 8: 11992–12010. doi: 10.1016/j.egyr.2022.09.054.

J. Abushnaf and A. Rassau. 2019. Impact of energy management system on the sizing of a grid-connected PV/Battery system. The Electricity Journal 31(92): 58–66. doi: 10.1016/j.tej.2018.02.009

A. Taimoor, Z. Asif, and F. Javed. 2017. Right-sizing Solar PV and Storage for Household Consumer Using Agent Based Modeling. Energy Procedia 142: 432–438. doi: 10.1016/j.egypro.2017.12.068.

B. Zhu, H. Tazvinga, and X. Xia. 2014. Model predictive control for energy dispatch of a photovoltaic-diesel-battery hybrid power system. Proceedings of the 19th World Congress The International Federation of Automatic Control Cape Town, South Africa. 47(3): 11135-11140.

S. K. Natarajan, F. Kamran, N. Ragavan, R. Rajesh, R. K. Jena, and S. K. Suraparaju. 2019. Analysis of PEM hydrogen fuel cell and solar PV cell hybrid model. Materials Today: Proceedings 17: 246–253. doi: 10.1016/j.matpr.2019.06.426.

A. Sharma, S. Masoumi, D. Gedefaw, S. O’Shaughnessy, D. Baran, and A. Pakdel. 2022. Flexible solar and thermal energy conversion devices: Organic photovoltaics (OPVs), organic thermoelectric generators (OTEGs) and hybrid PV-TEG systems. Applied Materials Today 29:101614. doi: 10.1016/j.apmt.2022.101614.

M. Kesraoui, A. Lazizi, and A. Chaib. Grid Connected Solar PV System: 2016. Modeling, Simulation and Experimental Tests. Energy Procedia 95: 181-188. doi: 10.1016/j.egypro.2016.09.043.

E. Mulenga, A. Kabanshi, H. Mupeta, M. Ndiaye, E. Nyirenda, and K. Mulenga. 2022. Techno-economic analysis of off-grid PV-Diesel power generation system for rural electrification: A case study of Chilubi district in Zambia. Renewable Energy 203: 601-611. doi: 10.1016/j.renene.2022.12.112.

I. Diab, B. Scheurwater, A. Saffirio, G. R. Chandra-Mouli, and P. Bauer. 2021. Placement and sizing of solar PV and Wind systems in trolleybus grids. Journal of Cleaner Production 352: 131-533. doi: 10.1016/j.jclepro.2022.131533.

Y. T. Wassie and E. O. Ahlgren. 2022. Performance and Reliability Analysis of an Off-Grid Pv Mini-Grid System in Rural Tropical Africa Using Actual Data: A Case Study in Southern Ethiopia. SSRN Electronic Journal 8: 100-106. doi: 10.2139/ssrn.4166494.

Om Prakash Pandey, Vivek Victor, Dung Dung, Praveen Mishra, Ravi Kumar. 2022. Simulating rooftop solar arrays with varying design parameters to study effect of mutual shading. Energy for Sustainable Development. 68: 425-440.

Belal Ghaleb, Muhammad Asif. 2022. Application of solar PV in commercial buildings: Utilizability of rooftops. Energy and Buildings. 257: 111-774.

Jen-Yu Han, Ying-Chu Chen, Sin-Yi Li.2022. Utilising high-fidelity 3D building model for analysing the rooftop solar photovoltaic potential in urban areas. Solar Energy. 235: 187-199.

Wang X, Gao X, Wu Y. 2023. Comprehensive analysis of tropical rooftop PV project: A case study in nanning. Heliyon. 9(3): 14131. doi:10.1016/j.heliyon.2023.e14131

Syariffuddin. 2021. Analysis of the Implementation of Article 2 Letter B of the Regulation of the Minister of Energy and Mineral Resources Number 28/2016 concerning Electricity Tariffs Provided by PT PLN. Jurnal Hukum Das Sollen. 5.(1): 50-62. doi: 10.32520/das-sollen.v5i1.1647.

Ministry of energy and mineral resources team. 2021. Minister of energy and mineral resources policy number 26/2021. Indonesia:MEMR.

Ministry of energy and mineral resources team. 2022. Minister of energy and mineral resources policy number 10/2022. Indonesia:MEMR.

Ministry of energy and mineral resources team 2018. Minister of energy and mineral resources regulation number 879/2018. Indonesia:MEMR.

Ministry of energy and mineral resources team 2020. MEMR policy number 16/2020. Indonesia: MEMR.

Ministry of energy and mineral resources team. 2014. Government regulation of the Republic of Indonesia number 79/2014 on national energy policy. Indonesia: MEMR.

F. U. Haq, T. U. Rashid, and U. U. R. Zia. 2011. Socio-Economic Prospects of Solar PV Uptake in Energy Policy Landscape of Pakistan. International Journal of Renewable Energy Development. 11(4): 936–949. doi: 10.14710/ijred.2022.46082.

A. O. M. Maka, S. Salem, and M. Mehmood. 2021. Solar photovoltaic (PV) applications in Libya: Challenges, potential, opportunities and future perspectives. Cleaner Engineering and Technology. 5: 100-267. doi: 10.1016/j.clet.2021.100267.




How to Cite

Ansori, A., Arsana, I. M., Siregar, I. H., Adiwibowo, P. H., & Haryuda, S. I. (2023). TECHNO-ECONOMIC ANALYSIS OF TRIANGULAR ROOFTOP SOLAR PV MODEL/PLN ON-GRID HOUSEHOLD SCALE IN INDONESIA. ASEAN Engineering Journal, 13(4), 127–132.