DESIGNING OF DYNAMIC SURFACE CONTROL BASED ON BACKSTEPPING TECHNIQUE FOR SERIES ELASTIC ACTUATOR ROBOT
DOI:
https://doi.org/10.11113/aej.v14.20018Keywords:
Series elastic actuator, backstepping control, dynamic surface control, nonlinear system designAbstract
Serial elastic actuators have gained significant attention in robotics research due to their ability to meet safety requirements in physical interactions between humans and robots. However, one problem of series elastic actuator is the oscillation of the robot due to the flexibility of the robotic joints leading to a decline in the accuracy of the robot’s position control. In this paper, a dynamic surface control algorithm based on the backstepping technique for the position control of serial elastic actuator robot is proposed to overcome the oscillation problem. In addition, the proposed control algorithm has been proved to be stable and robust. The simulation results clearly demonstrate the effectiveness of the proposed method.
References
Robinson, D. W. 2000. Design and analysis of series elasticity in closed-loop actuator force control. PhD Thesis, Massachusetts Institute of Technology.
Pratt, G. A. 1995. Williamson, Stiffness isn’t everything. Proc. 4th Int. Symp. on Experimental Robotics. 173–178. DOI: 10.1007/BFb0035216
Pratt, J., and B. Krupp. 2008. Design of a bipedal walking robot. Unmanned systems technology X. SPIE. 480–492. DOI: 10.1117/12.777973
Pratt, J. E. 1995. Virtual model control of a biped walking robot. M.Eng. Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology.
Zinn, M., B. Roth, O. Khatib, and J. K. Salisbury. 2004. A new actuation approach for human friendly robot design. The international journal of robotics research. 23(4–5): 379–398. DOI: 10.1109/ROBOT.2004.1307159
Howard, R. D. 1990. Joint and actuator design for enhanced stability in robotic force control. PhD Thesis, Massachusetts Institute of Technology.
Raibert, M. H. 1986. Legged robots that balance. MIT press.
Koditschek, D. E, and M. Bühler. 1991. Analysis of a Simplified Hopping Robot. The International Journal of Robotics Research. 10(6):587-605. DOI:10.1177/027836499101000601
Brown, B., and G. Zeglin. 1998. The bow leg hopping robot. Proceedings. 1998 IEEE International Conference on Robotics and Automation. 781–786. DOI: 10.1109/ROBOT.1998.677072
Pratt, G. A., and M. M. Williamson. 1995. Series elastic actuators. Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots. 1: 399-406. DOI: 10.1109/IROS.1995.525827
Yu, H., S. Huang, G. Chen, Y. Pan, and Z. Guo. 2015. Human–robot interaction control of rehabilitation robots with series elastic actuators. IEEE Transactions on Robotics. 31(5): 1089–1100. DOI: 10.1109/TRO.2015.2457314
Isik, K., S. He, J. Ho, and L. Sentis. 2017. Re-engineering a high performance electrical series elastic actuator for low-cost industrial applications. Actuators. MDPI. 5. DOI: 10.3390/act6010005
Lee, H., J. Lee, J.-H. Ryu, and S. Oh. 2019. Relaxing the conservatism of passivity condition for impedance controlled series elastic actuators. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 7610–7615. DOI: 10.1109/IROS40897.2019.8968217
Sun, H. J., J. Ye, and G. Chen. 2021. Trajectory Tracking of Series Elastic Actuators Using Terminal Sliding Mode Control. 33rd Chinese Control and Decision Conference (CCDC). 189–194. DOI: 10.1109/CCDC52312.2021.9601778
Sariyildiz, E., H. Wang, and H. Yu. 2017. A sliding mode controller design for the robust position control problem of series elastic actuators. 2017 IEEE International Conference on Robotics and Automation (ICRA). 3055–3061. DOI: 10.1109/ICRA.2017.7989350
Sun, W., L. Sun, M. Wang, S. Lei, and J. Liu. 2016. An integral sliding-mode control approach for series elastic actuator torque control. 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO). 1209–1214. DOI: 10.1109/ROBIO.2016.7866490
Zhao, W., L. Sun, W. Yin, M. Li, and J. Liu. 2019. Robust Position Control of Series Elastic Actuator with Backstepping Based on Disturbance Observer. 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). 618–623. DOI: 10.1109/AIM.2019.8868550
Duong, M. D., and T. T. Tung. 2023. Adaptive Slotine - Li based backstepping control for series elastic actuator robot. Measurement, Control, and Automation. 4(1): 56-61.
Kenanoglu, C. U., and V. Patoglu. 2022. Passivity of Series Elastic Actuation Under Model Reference Force Control During Null Impedance Rendering. IEEE Transactions on Haptics. 15(1): 51–56. DOI: 10.1109/TOH.2021.3140143
Losey, D. P., A. Erwin, C. G. McDonald, F. Sergi, and M. K. O’Malley. 2016. A time-domain approach to control of series elastic actuators: Adaptive torque and passivity-based impedance control. IEEE/ASME Transactions on Mechatronics. 21(4): 2085–2096. DOI: 10.1109/TMECH.2016.2557727.
Lin, Y., Z. Chen, and B. Yao. 2019. Decoupled torque control of series elastic actuator with adaptive robust compensation of time-varying load-side dynamics. IEEE Transactions on Industrial Electronics. 67(7): 5604–5614. DOI: 10.1109/TIE.2019.2934023
Spong, M. W., S. Hutchinson, and M. Vidyasagar. 2006. Robot modeling and control. New York: Wiley.
Swaroop, D., J. K. Hedrick, P. P. Yip and J. C. Gerdes. 2000. Dynamic surface control for a class of nonlinear systems. IEEE Transactions on Automatic Control. 45(10): 1893-1899. DOI: 10.1109/TAC.2000.880994.
Green, J. H., and J. K. Hedrick. 1990. Nonlinear speed control for automotive engines. 1990 American Control Conference, IEEE. 2891–2897. DOI: 10.23919/ACC.1990.4791247