OPTICAL ABSORPTION STUDY OF PEROVSKITE SOLAR CELL WITH PHOTONIC CRYSTAL USING FDTD SIMULATION

Authors

  • Yuni Rahmawati Physics Study Program, Universitas Pendidikan Indonesia, Bandung 40154, Indonesia
  • Chandra Wulandari Engineering Physics, Faculty of Technological Industry, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Jawa Barat, Indonesia
  • Silva Nurfasha Physics Study Program, Universitas Pendidikan Indonesia, Bandung 40154, Indonesia
  • Lilik Hasanah Physics Study Program, Universitas Pendidikan Indonesia, Bandung 40154, Indonesia
  • Budi Mulyanti Electrical Engineering Education Study Program, Universitas Pendidikan Indonesia, Bandung 40154, Indonesia
  • Roer Eka Pawinanto Industrial Automation and Robotics Engineering Education Study Program, Universitas Pendidikan Indonesia, Bandung 40154, Indonesia

DOI:

https://doi.org/10.11113/aej.v14.20821

Keywords:

Perovskite, solar cells, photonic crystal, optical absorption, FDTD simulations

Abstract

Increasing absorption poses a challenge for enhancing solar cell performance. Consequently, perovskite solar cells have emerged as a solution in recent years due to their advantages, such as high flexibility, low cost, and good radiation resistance. To further enhance the performance of perovskite solar cells, photonic crystals have been introduced into their structure, boasting exceptional optical properties. In this study, two-dimensional photonic crystals comprising ZnO material and MAPbI3 perovskite were utilized as absorbent layers. Through Finite Difference Time Domain (FDTD) simulations, the research successfully demonstrates the effectiveness of increasing absorption by modifying the diameter and period of the photonic crystals. The results indicate that absorption increases as the diameter decreases and the period increases. Notably, the highest absorption value was achieved with a diameter of 0.20 μm and a period of 0.50 μm. The simulation results clearly illustrate that perovskite solar cells with photonic crystals exhibit higher absorption compared to solar cells without photonic crystals.

References

Y. Tu, J. Wu, G. Xu, X. Yang, R. Cai, Q. Gong, R. Zhu, and W. Huang, 2021 “Perovskite solar cells for space applications: progress and challenges”. Advanced Materials, 33(21): 2006545. DOI: 10.1002/adma.202006545.

Y.C. Hsieh, J.Y. Huang, and Y.R. Wu, Y, 2018 “Optimization of MAPbI 3 Perovskite Solar Cell with Nano Structures”. In 2018 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). 137-138. DOI: 10.1109/NUSOD.2018.8570292.

W. Liu, H. Ma, and A. Walsh, 2019 “Advance in photonic crystal solar cells”. Renewable and Sustainable Energy Reviews, 116: 109436. DOI: 10.1016/j.rser.2019.109436.

L. Hasanah, A. Ashidiq, R.E. Pawinanto, B. Mulyanti, C. Wulandari, Wiendartun and A.R. Md. Zain, 2021 “Dimensional optimization of TiO2 nanodisk photonic crystals on lead iodide (MAPbI3) perovskite solar cells by using FDTD simulations”. Applied Sciences, 12(1): 351. DOI: 10.3390/app12010351.

W. Wiendartun, C. Wulandari, J.N. Fauzan, L. Hasanah, H.S. Nugroho, R.E. Pawinanto, and B. Mulyanti, 2022 “Trends in research related to photonic crystal (PHC) from 2009 to 2019: A bibliometric and knowledge mapping analysis”. Journal of Engineering Science and Technology, 17(1): 0343-0360. DOI: -

S. Eyderman, S. John, M. Hafez, S.S. Al-Ameer, T.S. Al-Harby, Y. Al-Hadeethi, and D.M. Bouwes, 2015 “Light-trapping optimization in wet-etched silicon photonic crystal solar cells”. Journal of Applied Physics, 118(2): DOI: 10.1063/1.4926548.

S. Bhattacharya and S. John, 2018 “Designing high-efficiency thin silicon solar cells using parabolic-pore photonic crystals”. Physical Review Applied, 9(4): 044009. DOI: 10.1103/PhysRevApplied.9.044009.

O. El Daif, E. Drouard, G. Gomard, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E.G. Cavrel, P.R. Cabarrocas, S. Ahn, and H. Jeon, 2010 “Absorbing photonic crystals for thin film photovoltaics”. In Photonic Crystal Materials and Devices IX. 7713: 62-67. DOI: 10.1117/12.854035.

A. Ouanoughi, A. Hocini, and D. Khedrouche, 2015 “Study of the absorption in solar cells with 2D photonic crystals”. Acta Physica Polonica A, 127(4): 1205-1207.

N.D. Gupta and V. Janyani, 2017 “Design and analysis of light trapping in thin film GaAs solar cells using 2-D photonic crystal structures at front surface”. IEEE Journal of Quantum electronics, 53(2): 1-9. DOI: 10.1109/JQE.2017.2667638.

I. Prieto, B. Galiana, P.A. Postigo, C. Algora, L.J. Martínez, and I. Rey-Stolle, 2009 “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface”. Applied Physics Letters, 94(19). DOI: 10.1063/1.3133348.

S. Guldin, S. Huttner, M. Kolle, M.E. Welland, P. Muller-Buschbaum, R.H. Friend, U. Steiner, and N. Tétreault, 2010 “Dye-sensitized solar cell based on a three-dimensional photonic crystal”. Nano letters, 10(7): 2303-2309. DOI: 10.1021/nl904017t.

A.H. Aly and H. Sayed, 2017 “Enhancement of the solar cell based on nanophotonic crystals”. Journal of Nanophotonics, 11(4): 046020-046020. DOI: 10.1117/1.JNP.11.046020.

M.M. Hasan, S.A. Rahman, M.M.H. Prodhan, and A.H. Talukder, 2018 “Absorption Enhancement of Organic Solar Cell using Aluminum Oxide as a Photonic Crystal”. Journal of Bangladesh Academy of Sciences, 42(1): 87-97. DOI: 10.3329/jbas.v42i1.37835.

A. Chutinan, A., Kherani, and S. Zukotynski, 2009 “High-efficiency photonic crystal solar cell architecture”. Optics Express, 17(11): 8871-8878. DOI: 10.1364/OE.17.008871.

D.H. Ko, J.R. Tumbleston, L. Zhang, S. Williams, J.M. DeSimone, R. Lopez, and E.T. Samulski, 2009 “Photonic crystal geometry for organic solar cells”. Nano letters, 9(7): 2742-2746. DOI: 10.1021/nl901232p.

A.S. Mohsin, M. Mobashera, A. Malik, M. Rubaiat, and M. Islam, 2020 “Light trapping in thin-film solar cell to enhance the absorption efficiency using FDTD simulation”. Journal of Optics, 49: 523-532. DOI: 10.1007/s12596-020-00656-w.

A.A. Patwary, M.A. Feroz, and S.B. Saif, 2021. Design of tandem solar cell to enhance the conversion efficiency using FDTD simulation (Doctoral dissertation, Brac University).

G.D. Shilpa, T.K. Subramanyam, and K. Sreelakshmi, 2016 “Study and Optimization of Metal Nanoparticles for the Enhanced Efficiency Thin Film Solar Cells”. In IOP Conference Series: Materials Science and Engineering. 149(1): 012074. DOI: 10.1088/1757-899X/149/1/012074.

B. Mulyanti, C. Wulandari, L. Hasanah, R.E. Pawinanto, and I. Hamidah, 2022 “Absorption Performance of Doped TiO2‐Based Perovskite Solar Cell using FDTD Simulation”. Modelling and Simulation in Engineering, 2022(1): 9299279. DOI: 10.1155/2022/9299279.

F. Azri, A. Meftah, N. Sengouga, and A. Meftah, 2019 “Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell”. Solar energy, 181: 372-378. DOI: 10.1016/j.solener.2019.02.017.

S.G. Johnson and J.D. Joannopoulos, 2003 “Introduction to photonic crystals: Bloch’s theorem, band diagrams, and gaps (but no defects)”. Photonic Crystal Tutorial, 1: 16. [Online]. Available: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Introduction+to+Photonic+Crystals:+Bloch?s+Theorem,+Band+Diagrams,+and+Gaps+(But+No+Defects)#0

H. Sayed, H., M. Al-Dossari, M., M.A. Ismail, M.A., N.S. Abd El-Gawaad, N.S. and A.H. Aly, A.H., 2022 “Theoretical analysis of optical properties for amorphous silicon solar cells with adding anti-reflective coating photonic crystals”. In Photonics. 9(11): 813. DOI: 10.3390/photonics9110813.

R.M. De La Rue and S.A. De La Rue, 2008 “Introduction to photonic crystals and photonic band-gaps”. Photonic Crystals: Physics and Technology.7-25. DOI: 10.1007/978-88-470-0844-1_2.

Downloads

Published

2024-11-30

Issue

Section

Articles

How to Cite

OPTICAL ABSORPTION STUDY OF PEROVSKITE SOLAR CELL WITH PHOTONIC CRYSTAL USING FDTD SIMULATION. (2024). ASEAN Engineering Journal, 14(4), 37-40. https://doi.org/10.11113/aej.v14.20821