A REVIEW OF SOLAR TRACKING CONFIGURATION AND OPTIMIZATION ALGORITHMS FOR THE DUAL AXIS SOLAR TRACKER SYSTEMS

Authors

  • Munther Mohamed-Abdulhussein School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
  • Rosmiwati Mohd Mokhtar School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia

DOI:

https://doi.org/10.11113/aej.v14.20986

Keywords:

Evaluation algorithms, dual axis, optimization, photovoltaic panel, solar tracker

Abstract

Solar energy is considered one of the most important types of renewable energy resources due to its availability worldwide at wide times. Many researchers have been interested in developing many ways to obtain the highest efficiency and lowest cost of solar energy. The highest energy is obtained when the sun's radiation is incident perpendicular to the photovoltaic (PV) panel. The Earth revolves around itself daily and circulates the sun annually. Therefore, obtaining the perpendicularity of the radiation to the photovoltaic panel (PVP) is difficult. The dual-axis solar tracking is one of the most important methods proposed to maintain the perpendicularity of the radiation to the photovoltaic panel. There are several ways to improve the operation of the dual-axis solar tracker to ensure that the sunlight is perpendicular to the photovoltaic panel. This study reviews the evaluation algorithms and techniques for improving tracker systems' performance. From reviews, innovative technologies or expert systems can be employed to control the orientation of PVP to obtain maximum solar energy conversion. Innovative technologies can also be developed by mixing more than one technology to obtain the desired goal, such as hybridizing algorithms, fuzzy logic, neural networks, and others for solar tracking systems. In addition, the diversity of the optimization techniques using metaheuristic algorithms provided researchers with a comprehensive workspace to derive perfect results even in practical experiments.

References

Mohamed, M.A., Zaki Diab, A.A. & Rezk, H. 2019. Partial shading mitigation of PV systems via different meta-heuristic techniques, Renewable Energy, 130: 1159-1175. DOI: https://doi.org/10.1016/j.renene.2018.08.077.

Rezk, H. & Fathy, A. 2017. A novel optimal parameters identification of triple-junction solar cell based on a recently meta-heuristic water cycle algorithm, Solar Energy, 157: 778-791. DOI: https://doi.org/10.1016/j.solener.2017.08.084.

Salem, F.A. & Mahfouz, A.A. 2016. Modeling and simulation issues on standalone two axis sun tracker, Saudi Journal of Engineering and Technology, 1(4):135-148. DOI:10.21276/sjeat.2016.1.4.4.

Kassem, A. & Hamad, M. 2011. A microcontroller-based multi-function solar tracking system, In 2011 IEEE International Systems Conference 4-7 Apr, Montreal Canada, 13-16. doi: 10.1109/SYSCON.2011.5929048.

Al.-Rousan, N., Mat Isa, N.A. & Mat Desa, M.K. 2018. Advances in solar photovoltaic tracking systems: A review, Renewable & Sustainable Energy Reviews, 82(3): 2548-2569. DOI: https://doi.org/10.1016/j.rser.2017.09.077.

Borhanazad, H., Mekhilef, S., Saidur, R. & Boroumandjazi, G. 2013. Potential application of renewable energy for rural electrification in Malaysia, Renewable Energy, 59: 210-219. DOI: https://doi.org/10.1016/j.renene.2013.03.039

Pervez, I., Sarwar, A., Pervez, A., Tariq, M. & Zaid, M. 2021. Maximum power point tracking of a partially shaded solar PV generation system using coyote optimization algorithm (COA), In Pandey V.C., Pandey P.M., Garg S.K. (eds) Advances in Electromechanical Technologies. Lectures Notes in Mechanical Engineering, Springer, Singapore. 509-518. https://doi.org/10.1007/978-981-15-5463-6_44.

Sørensen, B. 1991. Renewable energy: A technical overview, Energy Policy. 19(40): 386 391. DOI: https://doi.org/10.1016/0301 4215(91)90061-R.

Awasthi, A., Shukla, A.K., Murali Manohar, S.R., Donsariya, C., Shukla, K.N., Porwal, D. & Richhariya, G. 2020. Review on sun tracking technology in solar PV system, Energy Reports, 6: 392-405. DOI: https://doi.org/10.1016/j.egyr.2020.02.004.

Carballo, J.A., Bonilla, J., Roca, L. & Berenguel, M. 2018. New low-cost solar tracking system based on open source hardware for educational purposes, Solar Energy, 174:826-836. DOI: https://doi.org/10.1016/j.solener.2018.09.064.

Khan, M.T.A., Tanzil, S.M.S., Rahman, R. & Alam, S.M.S. 2010. Design and construction of an automatic solar tracking system, In International Conference on Electrical & Computer Engineering (ICECE 2010), 326-329. doi: 10.1109/ICELCE.2010.5700694.

Berrera, M., Dolara, A., Faranda, R. & Leva, S. 2009. Experimental test of seven widely-adopted MPPT algorithms, In 2009 IEEE Bucharest PowerTech, 1-8. doi: 10.1109/PTC.2009.5282010.

Leva, S. & Zaninelli, D. 2009. Hybrid renewable energy-fuel cell system: Design and performance evaluation, Electric Power Systems Research, 79(2): 316-324. https://doi.org/10.1016/j.epsr.2008.07.002

Salem, F.A. 2014. Modeling and simulation issues on photovoltaic systems, for mechatronics design of solar electric applications, International Journal of Mechanical Engineering, 2(8): 24-47. DOI: 10.5815/ijisa.2015.01.02

Yang, B., Wang, J., Zhang, X., Yu, T., Yao, W., Shu, H., Zeng, F. & Sun, L. 2020. Comprehensive overview of meta-heuristic algorithm applications on PV cell parameter identification, Energy Conversion & Management. 208(5): 112595. DOI: https://doi.org/10.1016/j.enconman.2020.112595

Stamatescu, I., Fagarasan, I., Stamatescu, G., Arghira, N. & Iliescu, S.S. 2014. Design and implementation of a solar-tracking algorithm, Procedia Engineering. 69: 500 507. DOI: https://doi.org/10.1016/j.proeng.2014.03.018.

Ali, M., Nurohmah, H., Budiman, Suharsono, J., Suyono, H. & Muslim, M.A. 2019. Optimization on PID and ANFIS controller on dual axis tracking for photovoltaic based on firefly algorithm, 2019 International Conference on Electrical, Electronics and Information Engineering (ICEEIE), 1-5.

doi: 10.1109/ICEEIE47180.2019.8981428.

Mane, S.G., Korachagaon, I., Hans, M.R. & Sawant, A.S. 2018. Simulation of dual axis solar tracking system, 2018 International Conference on Information, Communication, Engineering and Technology (ICICET), 1-5. doi: 10.1109/ICICET.2018.8533760.

Fonash, S.J., Nam, W.J., Dornstetter, J., Al-Ghzaiwat, M., Foldyna, M. & Cabarrocas, P.R. 2017. A solar cell architecture for enhancing performance while reducing absorber thickness and back contact requirements, IEEE Journal of Photovoltaics, 7(4): 974-979. DOI: 10.1109/JPHOTOV.2017.2703854.

Twidell J., & Weir, T. 2015. Renewable energy resources, London: Routledge, 2015.

Pillai, D.S. & Rajasekar, N. 2018. Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems, Renewable & Sustainable Energy Reviews, 82(3): 3503-3525. DOI: https://doi.org/10.1016/j.rser.2017.10.107.

Singh, V. & Singh, S. 2017. MPPT controller for solar PV cells using GSAPSO algorithm, Indian Journal of Science & Technology, 10(31): 1-5. DOI: 10.17485/ijst/2017/v10i31/113869.

Lee, K., Chung, C., Huang, B., Kuo, T., Yang, H., Cheng, H., Hsu, P., & Li, K. 2017. A novel algorithm for single-axis maximum power generation sun trackers, Energy Conversion & Management, 149: 543-552. https://doi.org/10.1016/j.enconman.2017.07.041.

Kaur, T., Mahajan, S., Verma, S., Priyanka, & Gambhir, J. 2016. Arduino based low-cost active dual axis solar tracker, 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 1-5. doi: 10.1109/ICPEICES.2016.7853398.

Fouad, M.M., Shihata, L.A. & Morgan, E.I. 2017. An integrated review of factors influencing the performance of photovoltaic panels, Renewable & Sustainable Energy Reviews, 80: 1499-1511. DOI: https://doi.org/10.1016/j.rser.2017.05.141.

Chaidoulis, I., & Karanikolas, N.N. 2020. A review of microprocessor based solar photovoltaic tracking systems, 24th Pan-Hellenic Conference on Informatics. Athens, Greece, 82–86. https://doi.org/10.1145/3437120.3437280.

Verma, N., Kumar, M., & Sharma, S. 2021. Real-time solar tracking system with GPS, 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), 783-788. doi: 10.1109/ICAIS50930.2021.9396052.

Seme, S., Srpcic, G., Kavsek, D., Bozicnik, S., Letnik, T., Praunseis, Z., Stumberger, B., & Hadziselimovic, M. 2017. Dual-axis photovoltaic tracking system – Design and experimental investigation, Energy, 139: 1267-1274. https://doi.org/10.1016/j.energy.2017.05.153.

Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. 2009. GSA: A gravitational search algorithm, Information Sciences, 179(13): 2232-2248. DOI: https://doi.org/10.1016/j.ins.2009.03.004.

Dorigo, M., Birattari, M., & Stutzle, T. 2006. Ant colony optimization, IEEE Computational Intelligence Magazine, 1(4): 28-39. DOI: 10.1109/MCI.2006.329691.

Kennedy, J., & Eberhart, R. 1995. Particle swarm optimization, Proceedings of ICNN'95 – International Conference on Neural Networks, Perth Australia, 1942-1948. doi: 10.1109/ICNN.1995.488968.

Yang, X.-S., & Deb, S. 2010. Engineering optimization by cuckoo search, International Journal of Mathematical Modelling & Numerical Optimisation, 1(4): 330-343. https://doi.org/10.48550/arXiv.1005.2908.

Yang, X.-S. 2008. Nature-inspired metaheuristic algorithms, UK: Luniver Press.

Svetozarevic, B., et al. 2016. SoRo-Track: A two-axis soft robotic platform for solar tracking and building-integrated photovoltaic applications, 2016 IEEE International Conference on Robotics and Automation (ICRA), Sweden, 4945-4950. doi: 10.1109/ICRA.2016.7487700.

Lamoureux, A., Lee, K., Shlian, M., Forrest, S.R., & Shtein, M. 2015. Dynamic kirigami structures for integrated solar tracking, Nature Communications. 6(1): 1 6. DOI: https://doi.org/10.1038/ncomms9092.

Alqahtani, S., Alotaibi, N., Alzahrani, F., & Alwahhas, N. 2020. Design and development of new solar tracking system, Technical Report, Prince Mohammad bin Fahd University.

Qiao, Q., Yuan, J., Shi, Y., Ning, X., & Wang, F. 2017. Structure, design, and modeling of an origami-inspired pneumatic solar tracking system for the NPU-Phonesat, Journal of Mechanisms and Robotics, 9(1): 011004. https://doi.org/10.1115/1.4035086.

Johnsen, H.J.D., Aksnes, A., & Torgersen, J. 2020. High-performance stationary solar tracking through multi-objective optimization of beam-steering lens arrays, Optics Express, 28: 20503-20522. https://doi.org/10.1364/OE.396477.

Mustafa, F.I., Shakir, S., Mustafa, F.F., & Naiyf, A.T. 2018. Simple design and implementation of solar tracking system two axes with four sensors for Baghdad city, 2018 9th International Renewable Energy Congress (IREC), Tunisia, 1-5. doi: 10.1109/IREC.2018.8362577.

Burhan, M., Oh, S.J., Chua, K.J.E., & Ng, K.C. 2016. Double lens collimator solar feedback sensor and master slave configuration: Development of compact and low cost two-axis solar tracking system for CPV applications, Solar Energy, 137: 352-363. DOI: https://doi.org/10.1016/j.solener.2016.08.035.

Abdollahpour, M., Golzarian, M.R., Rohani, A., & Zarchi, H.A. 2018. Development of a machine vision dual-axis solar tracking system, Solar Energy. 169: 136 143. DOI: https://doi.org/10.1016/j.solener.2018.03.059.

Appelbaum, J. 2016. Bifacial photovoltaic panels field, Renewable Energy. 85: 338 343. DOI: https://doi.org/10.1016/j.renene.2015.06.050.

Hofer, J., Groenewolt, A., Jayathissa, P., Nagy, Z., & Schlueter, A. 2016. Parametric analysis and systems design of dynamic photovoltaic shading modules, Energy Science & Engineering, 4(2): 134-152. DOI: https://doi.org/10.1002/ese3.115.

Killinger, S., et al. 2018. On the search for representative characteristics of PV systems: Data collection and analysis of PV system azimuth, tilt, capacity, yield and shading, Solar Energy, 173: 1087-1106. DOI: https://doi.org/10.1016/j.solener.2018.08.051.

Aygül, K., Cikan, M., Demirdelen, T., & Tumay, M. 2019. Butterfly optimization algorithm based maximum power point tracking of photovoltaic systems under partial shading condition, Energy Sources, Part A: Recovery, Utilisation and Environmental Effects, 1-19.

DOI: https://doi.org/10.1080/15567036.2019.1677818.

Bahrami, A., Okoye, C.O., & Atikol, U. 2016. The effect of latitude on the performance of different solar trackers in Europe and Africa, Applied Energy, 177: 896-906. DOI: https://doi.org/10.1016/j.apenergy.2016.05.103.

Wong, J, Bai, F., Saha, T.K., & Tan, R.H.G. 2021. A feasibility study of the 1.5-axis tracking model in utility-scale solar PV plants, Solar Energy. 216: 171 179. DOI: https://doi.org/10.1016/j.solener.2020.12.035.

Karafil, A., Ozbay, H., Kesler, M., & Parmaksiz, H. 2015. Calculation of optimum fixed tilt angle of PV panels depending on solar angles and comparison of the results with experimental study conducted in summer in Bilecik, Turkey, 2015 9th International Conference on Electrical and Electronics Engineering (ELECO), Turkey, 971-976. doi: 10.1109/ELECO.2015.7394517.

Batayneh, W., Bataineh, A., Soliman, I., & Hafees, S.A. 2019. Investigation of a single-axis discrete solar tracking system for reduced actuations and maximum energy collection, Automation in Construction, 98: 102-109. DOI: https://doi.org/10.1016/j.autcon.2018.11.011

S. Yilmaz, et al. 2015. Design of two axes sun tracking controller with analytically solar radiation calculations, Renewable and Sustainable Energy Reviews, 43: 997-1005. DOI: https://doi.org/10.1016/j.rser.2014.11.090.

Rahimoon, A.A., et al. 2020. Design of parabolic solar dish tracking system using Arduino, Indonesian Journal of Electrical Engineering & Computer Science, 17(2): 914-921. http://doi.org/10.11591/ijeecs.v17.i2.pp914-921.

Lu, J., & Hajimirza, S. 2017. Optimizing sun-tracking angle for higher irradiance collection of PV panels using a particle-based dust accumulation model with gravity effect, Solar Energy, 158: 71-82. DOI: https://doi.org/10.1016/j.solener.2017.08.066.

Katrandzhiev, N.T., & Karnobatev, N.N. 2018. Algorithm for single axis solar tracker, 2018 IEEE XXVII International Scientific Conference Electronics – ET, 1-4. doi: 10.1109/ET.2018.8549644.

Ashhab, M.S., & Akash, O. 2016. Experiment on PV panels tilt angle and dust, 2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA), 1-3. doi: 10.1109/ICEDSA.2016.7818490.

Fathabadi, H. 2016. Novel high accurate sensorless dual-axis solar tracking system controlled by maximum power point tracking unit of photovoltaic systems, Applied Energy, 173: 448-459. DOI: 10.1016/j.apenergy.2016.03.109.

Gharehdaghi, S., Moujaes, S.F., & Nejad, A.M. 2021. Thermal-fluid analysis of a parabolic trough solar collector of a direct supercritical carbon dioxide Brayton cycle: A numerical study, Solar Energy, 220: 766-787 DOI: https://doi.org/10.1016/j.solener.2021.03.039.

Canbay, C.A., Tataroglu, A., Dere, A., Al-Ghamdi, A., & Yakuphanoglu, F. 2016. A new shape memory alloy film/p-Si solar light four quadrant detector for solar tracking applications, Journal of Alloys and Compounds, 688: 762-768. https://doi.org/10.1016/j.jallcom.2016.07.087.

Riad, A., Zohra, M.B., Alhamany, A., & Mansouri, M. 2020. Bio-sun tracker engineering self-driven by thermo-mechanical actuator for photovoltaic solar systems, Case Studies in Thermal Engineering, 21: 100709.DOI: https://doi.org/10.1016/j.csite.2020.100709.

Catarius, A. & Christiner, M. 2010. Azimuth-altitude dual axis solar tracker, Technical Report, Worcester Polytechnic Institute.

Mousazadeh, H., et al. 2009. A review of principle and sun-tracking methods for maximizing solar systems output, Renewable and Sustainable Energy Reviews, 13(80): 1800-1818. DOI: https://doi.org/10.1016/j.rser.2009.01.022.

Al-Naser, Q.A.H., Hilou, H.W., & Abdulkader, A.F. 2009. The last development in III-V multi-junction solar cells, 2009 ISECS International Colloquium on Computing, Communication, Control, and Management, 373-378. DOI: 10.1109/CCCM.2009.5268104.

Nsengiyumva, W., Chen, S.G., Hu, L., & Chen, X. 2018. Recent advancements and challenges in solar tracking systems (STS): A review, Renewable and Sustainable Energy Reviews, 81: 250-279. DOI: https://doi.org/10.1016/j.rser.2017.06.085.

Jamroen, C. et al. 2020. A low-cost dual-axis solar tracking system based on digital logic design: Design and implementation, Sustainable Energy Technologies & Assessments, 37: 100618. DOI: https://doi.org/10.1016/j.seta.2019.100618.

Kiyak, E., & Gol, G. 2016. A comparison of fuzzy logic and PID controller for a single-axis solar tracking system, Renewable: Wind, Water and Solar, 3(7): 1-14. DOI: https://doi.org/10.1186/s40807-016-0023-7.

de la Cruz-Alejo, J., Antonio-Mendez, R., & Salazar-Pereyra, M. 2019. Fuzzy logic control on FPGA for two axes solar tracking, Neural Computing & Applications, 31(7): 2469-2483. DOI: https://doi.org/10.1007/s00521-017-3207-1.

Ontiveros, J.J., Avalos, C.D., Loza, F., Galan, N.D., & Rubio, G.J. 2020. Evaluation and design of power controller of two-axis solar tracking by PID and FL for a photovoltaic module, International Journal of Photoenergy, 2020. https://doi.org/10.1155/2020/8813732.

Al-Rousan, N., Mat Isa, N.A., & Mat Desa, M.K. 2020. Efficient single and dual axis solar tracking system controllers based on adaptive neural fuzzy inference system, Journal of King Saud University - Engineering Sciences, 32(70: 459-469. https://doi.org/10.1016/j.jksues.2020.04.004.

Omran, A.H., Abid, Y.M., Ahmed, A.S., Kadhim, H., & Jwad, R. 2018. Maximizing the power of solar cells by using intelligent solar tracking system based on FPGA, 2018 Advances in Science and Engineering Technology International Conferences (ASET), 1-5. DOI: 10.1109/ICASET.2018.8376786.

Hilman, C., Tridianto, E., Ariwibowo, T.H., & Rohman, B.P.A. 2017. Forecasting of power output of 2-Axis solar tracked PV systems using ensemble neural network, 2017 International Electronics Symposium on Engineering Technology and Applications (IES-ETA), 152-156. DOI: 10.1109/ELECSYM.2017.8240394.

Al-Rousan, N., Mat Isa, N.A., & Mat Desa, M.K. 2021. Correlation analysis and MLP/CMLP for optimum variables to predict orientation and tilt angles in intelligent solar tracking systems, International Journal of Energy Research, 45(10): 453-477. https://doi.org/10.1002/er.5676.

Sabir, M.M., & Ali, T. 2016. Optimal PID controller design through swarm intelligence algorithms for sun tracking system, Applied Mathematics and Computation, 274: 690-699. DOI: https://doi.org/10.1016/j.amc.2015.11.036.

Huang, C.-H., Pan, H.-Y., & Lin, K.-C. 2016. Development of intelligent fuzzy controller for a two-axis solar tracking system, Applied Sciences, 6(5)130: 1-11.DOI: https://doi.org/10.3390/app6050130.

Barbón, A., Fernandez-Rubiera, J.A., Martinez-Valledor, L., Perez-Fernandez, A., & Bayon, L. 2021. Design and construction of a solar tracking system for small-scale linear Fresnel reflector with three movements, Applied Energy, 285: 116477. DOI: https://doi.org/10.1016/j.apenergy.2021.116477.

Mi, Z., Chen, J., Chen, N., Bai, Y., Fu, R., & Liu, H. 2016. Open-loop solar tracking strategy for high concentrating photovoltaic systems using variable tracking frequency, Energy Conversion and Management, 117: 142-149. DOI: https://doi.org/10.1016/j.enconman.2016.03.009.

Garrido, R., & Diaz, A. 2016. Cascade closed-loop control of solar trackers applied to HCPV systems, Renewable Energy, 97: 689-696.

DOI: https://doi.org/10.1016/j.renene.2016.06.022.

Saeedi, M., & Effatnejad, R. 2021. A new design of dual-axis solar tracking system with LDR sensors by using the Wheatstone bridge circuit, IEEE Sensors Journal, 21(13): 14915-14922. DOI: 10.1109/JSEN.2021.3072876.

Safan, Y.M., Shaaban, S., & Abu El-Sebah, M.I. 2017. Hybrid control of a solar tracking system using SUI-PID controller, 2017 Sensors Networks Smart and Emerging Technologies (SENSET), 1-4. DOI: 10.1109/SENSET.2017.8125035.

Zhang, J., Yin, Z., & Jin, P. 2019. Error analysis and auto correction of hybrid solar tracking system using photo sensors and orientation algorithm, Energy, 182(C): 585-593. DOI: https://doi.org/10.1016/j.energy.2019.06.032.

Safan, Y.M., Shaaban, S., & Abu El-Sebah, M.I. 2018. Performance evaluation of a multi-degree of freedom hybrid controlled dual axis solar tracking system, Solar Energy, 170: 576-585. DOI: https://doi.org/10.1016/j.solener.2018.06.011.

Fuentes-Morales, R.F. et al. 2020. Control algorithms applied to active solar tracking systems: A review, Solar Energy, 212: 203-219.

DOI: https://doi.org/10.1016/j.solener.2020.10.071.

Ray, S., & Tripathi, A.K. 2016. Design and development of Tilted Single Axis and Azimuth-Altitude Dual Axis Solar Tracking systems, 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 1-6. DOI: 10.1109/ICPEICES.2016.7853190.

Zhu, Y., Liu, J., & Yang, X. 2020. Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection, Applied Energy, 264: 114647. DOI: https://doi.org/10.1016/j.apenergy.2020.114647.

Singh, R., Kumar, S., Gehlot, A., & Pachauri, R. 2018. An imperative role of sun trackers in photovoltaic technology: A review, Renewable and Sustainable Energy Reviews, 82(3): 3263-3278. DOI: https://doi.org/10.1016/j.rser.2017.10.018.

Racharla, S., & Rajan, K. 2017. Solar tracking system–a review, International Journal of Sustainable Engineering, 10(2): 72-81. DOI: 10.1080/19397038.2016.1267816.

Vieira, R.G., Guerra, F.K.O.M.V., Vale, M.R.B.G., & Araujo, M.M. 2016. Comparative performance analysis between static solar panels and single-axis tracking system on a hot climate region near to the equator, Renewable and Sustainable Energy Reviews, 64: 672-681. DOI: https://doi.org/10.1016/j.rser.2016.06.089.

Jasim, B., & Taheri, P. 2018. An Origami-Based Portable Solar Panel System, 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 199-203. DOI: 10.1109/IEMCON.2018.8614997.

Hong, T., et al. 2016. A preliminary study on the 2-axis hybrid solar tracking method for the smart photovoltaic blind, Energy Procedia, 88: 484-490. https://doi.org/10.1016/j.egypro.2016.06.067.

Pourderogar, H., et al. 2020. Modeling and technical analysis of solar tracking system to find optimal angle for maximum power generation using MOPSO algorithm, Renewable Energy Research and Application. 1(2): 211 222. DOI: https://doi.org/10.22044/rera.2020.9497.1027.

Pandey, S. 2016. Solar panel tracking control. Tracking the variations caused due to reflection from snow and other factors, Master Thesis, The Arctic University of Norway.

Abdulhussein, M.M., Sahib, T.M., Jassem, A.A.M., & Kadhim, A.A. 2020. A smart control based on microcontroller for solar tracking system, Solid State Technology, 63(6): 11583-11591.

Tharamuttam, J.K., & Ng, A.K. 2017. Design and development of an automatic solar tracker, Energy Procedia, 143: 629-634. DOI: https://doi.org/10.1016/j.egypro.2017.12.738.

Pervez, I., Sarwar, A., Pervez, A., Tariq, M., & Zaid, M. 2021. An improved maximum power point tracking (MPPT) of a partially shaded solar PV system using PSO with constriction factor (PSO-CF), In Pandey V.C., Pandey P.M., Garg S.K. (eds) Advances in Electromechanical Technologies. Lecture Notes in Mechanical Engineering. Springer, Singapore. DOI: https://doi.org/10.1007/978-981-15-5463-6_43.

Abadi, I., & Permatasari, A. 2018. Pitch and yaw angle control design in solar panel system using PSO-Fuzzy method, ARPN Journal of Engineering and Applied Sciences, 13(3): 835-845.

Chen, J.-H., Yau, H.-T., & Lu, J.-H. 2016. Implementation of FPGA-based charge control for a self-sufficient solar tracking power supply system, Applied Science, 6(2): 41. DOI: https://doi.org/10.3390/app6020041

Te-Jen, S., Chien-Fang, L., Chun-Sheng, C., & Jui-Chuan, C. 2013. Solar tracking control system based on a hybrid BFO/PSO, 2013 International Symposium on Next-Generation Electronics. 482-485.

Jallal, M.A., Chabaa, S., & Zeroual, A. 2020. A novel deep neural network based on randomly occurring distributed delayed PSO algorithm for monitoring the energy produced by four dual-axis solar trackers, Renewable Energy, 149: 1182-1196. DOI: https://doi.org/10.1016/j.renene.2019.10.117.

Chen, J.-H., Yau, H.-T., & Hung, T.-H. 2015. Design and implementation of FPGA-based Taguchi-chaos-PSO sun tracking systems, Mechatronics, 25: 55-64. DOI: https://doi.org/10.1016/j.mechatronics.2014.12.004

Yahyazadeh, M., Sadeghi, M., & Marj, H.F. 2021. Competitive complex particle swarm optimization: An efficient algorithm for optimization of linear-rotational sun-tracking control parameters, Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 1-25. DOI: https://doi.org/10.1080/15567036.2021.1889074.

Pervez, I., Sarwar, A., Tayyab, M. & Sarfraz, M. 2019. Gravitational Search Algorithm (GSA) based Maximum Power Point Tracking in a Solar PV based Generation System, 2019 Innovations in Power and Advanced Computing Technologies (i-PACT), 1-6. DOI: 10.1109/i-PACT44901.2019.8960130.

Mahdi, B.D.E., Abdelatif, H., & Zafrane, M.A. 2020. An interactive approach for solar energy system: Design and manufacturing, International Journal of Electrical & Computer Engineering, 10(5): 4478-4489. http://doi.org/10.11591/ijece.v10i5.pp4478-4489.

Zaghba, L., et al. 2019. A genetic algorithm based improve P&O-PI MPPT controller for stationary and tracking grid-connected photovoltaic system, 2019 7th International Renewable and Sustainable Energy Conference (IRSEC), 1-6. doi: 10.1109/IRSEC48032.2019.9078304.

Downloads

Published

2024-11-30

Issue

Section

Articles

How to Cite

A REVIEW OF SOLAR TRACKING CONFIGURATION AND OPTIMIZATION ALGORITHMS FOR THE DUAL AXIS SOLAR TRACKER SYSTEMS. (2024). ASEAN Engineering Journal, 14(4), 49-60. https://doi.org/10.11113/aej.v14.20986