STUDY ON THE UTILIZATION OF TIO2/NISE/N/C FOR CR(VI) PHOTOREDUCTION
DOI:
https://doi.org/10.11113/aej.v14.21314Keywords:
Clean water, Cr(VI), formic acid, hole scavenger, photoreduction, TiO2Abstract
The toxic contaminant chromium is commonly found in industries such as electroplating, metallurgy, and metal processing. Cr(VI) ions are highly toxic, carcinogenic, and mutagenic. Photocatalytic reduction has emerged as a promising method for Cr(VI) removals due to its high efficiency, cost-effectiveness, and the absence of secondary pollutants. TiO2 was chosen as a photocatalyst due to its exceptional photocatalytic activity. However, TiO2 has the disadvantage of a broad bandgap and rapid electron-hole recombination. To overcome this drawback, a heterojunction is formed between TiO2 and NiSe. Nevertheless, TiO2/NiSe suffers from poor thermal stability and a tendency to agglomerate. To address these issues, NiSe is modified using carbon and nitrogen materials derived from chitosan. In this research, TiO2/NiSe modified with N/C has been synthesized through the solvothermal method as a photocatalyst utilizing two forms of TiO2, namely rutile (Rk) and P25 (Pk). The resulting photocatalysts are optimized for reducing Cr(VI) in water through photocatalysis. X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), UV-Diffuse Reflectance Spectroscopy (UV-DRS), and Fourier Transform Infrared (FTIR) spectroscopy were utilized for characterization. The UV-Vis DRS analysis indicated a reduction in the bandgap upon incorporating carbon and nitrogen elements. Rutile TiO2's bandgap has decreased from 3 eV to 2.87 eV, while P25 TiO2’s bandgap has decreased from 3.14 eV to 3.04 eV. The photoreduction study of TiO2/NiSe/N/C in water against Cr(VI) was also conducted with several variations, namely light source (no light, TL lamp, 365 nm lamp, 254 nm lamp) and hole scavenger (formic acid). The photoreduction test results demonstrate the superior performance of the composite compared to pure TiO2. For example, under 254 nm light, the P25 sample significantly improved from 20.41% (P) to 53.26% (Pk). The Rk sample shows the strongest activity in TL light, which achieved a photoreduction rate of up to 48%. The best photoreduction study results were obtained by the Pk sample at 254 nm lamp variation using a formic acid hole scavenger with 99.7% photoreduction.
References
M. Nasrollahzadeh, M. Sajjadi, S. Iravani, and R. S. Varma. 2021. Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. Journal of Hazardous Materials. 401: 123401. DOI: 10.1016/j.jhazmat.2020.123401.
N. Saha, M. S. Rahman, M. B. Ahmed, J. L. Zhou, H. H. Ngo, and W. Guo. 2017. Industrial metal pollution in water and probabilistic assessment of human health risk. Journal of Environmental Management. 185: 70–78. DOI: 10.1016/j.jenvman.2016.10.023.
M. Tumolo et al. 2020. Chromium Pollution in European Water, Sources, Health Risk, and Remediation Strategies: An Overview. International Journal of Environmental Research and Public Health. 17(15): 5438. DOI: 10.3390/ijerph17155438.
K. Brindha and M. Schneider. 2019. GIS and Geostatistical Techniques for Groundwater Science. Amsterdam: Elsevier. 179–196. DOI: 10.1016/B978-0-12-815413-7.00013-4.
A. Bakshi and A. K. Panigrahi. 2018. A comprehensive review on chromium induced alterations in fresh water fishes. Toxicology Reports. 5: 440–447. DOI: 10.1016/j.toxrep.2018.03.007.
V. Velma, S. S. Vutukuru, and P. B. Tchounwou. 2009. Ecotoxicology of Hexavalent Chromium in Freshwater Fish: A Critical Review. Reviews on Environmental Health. 24(2): 129–145. DOI: 10.1515/reveh.2009.24.2.129
Y. C. Zhang, J. Li, M. Zhang, and D. D. Dionysiou. 2011. Size-Tunable Hydrothermal Synthesis of SnS2 Nanocrystals with High Performance in Visible Light-Driven Photocatalytic Reduction of Aqueous Cr(VI). Environmental Science & Technology. 45(21): 9324–9331. DOI: 10.1021/es202012b.
M. M. Islam, A. A. Mohana, M. A. Rahman, M. Rahman, R. Naidu, and M. M. Rahman. 2023. A Comprehensive Review of the Current Progress of Chromium Removal Methods from Aqueous Solution. Toxics. 11(3): 252. DOI: 10.3390/toxics11030252.
Md. Nur-E-Alam, Md. A. S. Mia, F. Ahmad, and Md. M. Rahman. 2020. An overview of chromium removal techniques from tannery effluent. Applied Water Science. 10(9): 205. DOI: 10.1007/s13201-020-01286-0.
M. A. Irshad et al. 2023. Enhancing chromium removal and recovery from industrial wastewater using sustainable and efficient nanomaterial: A review. Ecotoxicology and Environmental Safety 263: 115231, DOI: 10.1016/j.ecoenv.2023.115231.
C. Zhang, H.-X. Ren, C.-Q. Zhong, and D. Wu. 2020. Biosorption of Cr(VI) by immobilized waste biomass from polyglutamic acid production. Scientific Reports, 10(1): 3705. DOI: 10.1038/s41598-020-60729-5.
R. Dong et al. 2019. Morphology-controlled fabrication of CNT@MoS2/SnS2 nanotubes for promoting photocatalytic reduction of aqueous Cr(VI) under visible light. Journal of Alloys and Compounds. 784: 282–292. DOI: 10.1016/j.jallcom.2019.01.032.
A. Lathe and A. M. Palve. 2023. A review: Engineered nanomaterials for photoreduction of Cr(VI) to Cr(III). Journal of Hazardous Materials Advances. 12: 100333. DOI: 10.1016/j.hazadv.2023.100333.
V. Loryuenyong, N. Jarunsak, T. Chuangchai, and A. Buasri. 2014. The Photocatalytic Reduction of Hexavalent Chromium by Controllable Mesoporous Anatase TiO2 Nanoparticles. Advances in Materials Science and Engineering. 2014: 1–8. DOI: 10.1155/2014/348427.
A. Deng, S. Wu, J. Hao, H. Pan, M. Li, and X. Gao. 2022. Photocatalytic Removal of Cr(VI) by Thiourea Modified Sodium Alginate/Biochar Composite Gel. Gels. 8(5): 293. DOI: 10.3390/gels8050293.
J. B. Islam, M. Furukawa, I. Tateishi, H. Katsumata, and S. Kaneco. 2019. Photocatalytic Reduction of Hexavalent Chromium with Nanosized TiO2 in Presence of Formic Acid. ChemEngineering. 3(2): 33. DOI: 10.3390/chemengineering3020033.
N. Wang, L. Zhu, K. Deng, Y. She, Y. Yu, and H. Tang. 2010. Visible light photocatalytic reduction of Cr(VI) on TiO2 in situ modified with small molecular weight organic acids. Applied Catalysis B: Environmental. 95: 400–407. DOI: 10.1016/j.apcatb.2010.01.019.
Y.-H. Chang and M.-C. Wu. 2019. Enhanced Photocatalytic Reduction of Cr(VI) by Combined Magnetic TiO2-Based NFs and Ammonium Oxalate Hole Scavengers. Catalysts. 9(1): 72. DOI: 10.3390/catal9010072.
F. E. Bortot Coelho, V. M. Candelario, E. M. R. Araújo, T. L. S. Miranda, and G. Magnacca. 2020. Photocatalytic Reduction of Cr(VI) in the Presence of Humic Acid Using Immobilized Ce–ZrO2 under Visible Light. Nanomaterials (Basel). 10(4): 779. DOI: 10.3390/nano10040779.
A. Azizi and J. Saien. 2018. Optimization of Cr(VI) Photocatalytic Reduction by UV/TiO2 : Influence of Inorganic and Organic species and Kinetic Study. Archives of Hygiene Sciences. 7(2): 81–90. DOI: 10.29252/ArchHygSci.7.2.81.
A. Kudo. 2007. Recent progress in the development of visible light-driven powdered photocatalysts for water splitting. International Journal of Hydrogen Energy. 32(14): 2673-2678. DOI: https://doi.org/10.1016/j.ijhydene.2006.09.010.
Z. Wang, C. Li, and K. Domen. 2019. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chemical Society Reviews. 48(7): 2109–2125. DOI: 10.1039/C8CS00542G.
R. Zouzelka, Y. Kusumawati, M. Remzova, J. Rathousky, and T. Pauporté. 2016. Photocatalytic activity of porous multiwalled carbon nanotube-TiO2 composite layers for pollutant degradation. Journal of Hazardous Materials. 317: 52–59. DOI: 10.1016/j.jhazmat.2016.05.056.
Y. Cong, B. Tian, and J. Zhang. 2011. Improving the thermal stability and photocatalytic activity of nanosized titanium dioxide via La3+ and N co-doping. Applied Catalysis B: Environmental. 101(3): 376–381, DOI: 10.1016/j.apcatb.2010.10.006.
M. Ismael. 2020. A review and recent advances in solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO2 nanoparticles. Solar Energy. 211: 522–546. DOI: 10.1016/j.solener.2020.09.073.
M. Humayun, F. Raziq, A. Khan, and W. Luo. 2018. Modification strategies of TiO2 for potential applications in photocatalysis: a critical review. Green Chemistry Letters and Reviews. 11(2): 86–102. DOI: 10.1080/17518253.2018.1440324.
H. Gong, Q. Liu, and C. Huang. 2019. NiSe as an effective co-catalyst coupled with TiO2 for enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy. 44(10): 4821–4831. DOI: 10.1016/j.ijhydene.2019.01.039.
Y. Li, H. Wang, and S. Peng. 2014. Tunable Photodeposition of MoS2 onto a Composite of Reduced Graphene Oxide and CdS for Synergic Photocatalytic Hydrogen Generation. The Journal of Physical Chemistry C. 118(34): 19842–19848. DOI: 10.1021/jp5054474.
P. Zhang, T. Wang, and H. Zeng. 2017. Design of Cu-Cu2O/g-C3N4 nanocomponent photocatalysts for hydrogen evolution under visible light irradiation using water-soluble Erythrosin B dye sensitization. Applied Surface Science. 391: 404–414. DOI: 10.1016/j.apsusc.2016.05.162.
J. Ding, P. Wang, S. Ji, H. Wang, D. J. L. Brett, and R. Wang. 2019. Mesoporous nickel selenide N-doped carbon as a robust electrocatalyst for overall water splitting. Electrochimica Acta. 300: 93–101. DOI: 10.1016/j.electacta.2019.01.093.
A. Haider, Z. N. Jameel, and Y. Taha. 2015. Synthesis and Characterization of TiO2 Nanoparticles via Sol- Gel Method by Pulse Laser Ablation. Engineering and Technology Journal. 33(5): 761-771.
L. Mi et al. 2012. 3D hierarchically patterned tubular NiSe with nano-/microstructures for Li ion battery design. Dalton Transactions. 41: 12595-12600. DOI: 10.1039/c2dt31787g.
M. Khan et al. 2021. Development and characterization of regenerable chitosan-coated nickel selenide nano-photocatalytic system for decontamination of toxic azo dyes. International Journal of Biological Macromolecules. 182: 866–878. DOI: 10.1016/j.ijbiomac.2021.03.192.
Y. Kusumawati, M. A. Martoprawiro, and T. Pauporté. 2014. Effects of Graphene in Graphene/TiO2 Composite Films Applied to Solar Cell Photoelectrode. The Journal of Physical Chemistry C. 118(19): 9974–9981. DOI: 10.1021/jp502385p.
A. B. D. Nandiyanto, R. Ragadhita, and M. Fiandini. 2023. Interpretation of Fourier Transform Infrared Spectra (FTIR): A Practical Approach in the Polymer/Plastic Thermal Decomposition. Indonesian Journal of Science and Technology. 8(1): 113-126. DOI: 10.17509/ijost.v8i1.53297.
P. Praveen, G. Viruthagiri, S. Mugundan, and N. Shanmugam. 2014. Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles-Synthesized via sol-gel route. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy. 117: 622–629. DOI: 10.1016/j.saa.2013.09.037.
M. Sandhya, D. Ramasamy, K. Sudhakar, K. Kadirgama, and W. S. W. Harun. 2021. Ultrasonication an intensifying tool for preparation of stable nanofluids and study the time influence on distinct properties of graphene nanofluids – A systematic overview. Ultrason Sonochem. 73: 105479. DOI: 10.1016/j.ultsonch.2021.105479.
D. A. H. Hanaor and C. C. Sorrell. 2011. Review of the anatase to rutile phase transformation. Journal of Materials Science. 46(4): 855–874. DOI: 10.1007/s10853-010-5113-0.
A. Sclafani and J. M. Herrmann. 1996. Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions. The Journal of Physical Chemistry. 100(32): 13655–13661. DOI: 10.1021/jp9533584.
I. García-Sosa and M. Olguín. 2015. Comparison Between the Cr(VI) Adsorption by Hydrotalcite and Hydrotalcite-Gibbsite Compounds. Separation Science and Technology. 50(17): 2631–2638. DOI: 10.1080/01496395.2015.1066810.
M. Gardner and S. Comber. 2002. Determination of trace concentrations of hexavalent chromium. Analyst. 127(1): 153–156. DOI: 10.1039/B109374F.
G. Duffy, I. Maguire, B. Heery, P. Gers, J. Ducrée, and F. Regan. 2018. ChromiSense: A colourimetric lab-on-a-disc sensor for chromium speciation in water. Talanta. 178: 392–399. DOI: 10.1016/j.talanta.2017.09.066.
A. Samad et al. 2017. Indirect Photocatalytic Reduction of Arsenate to Arsenite in Aqueous Solution with TiO 2 in the Presence of Hole Scavengers. Chinese Journal of Chemical Engineering. 26(3): 529-533. DOI: 10.1016/j.cjche.2017.05.019.
H. Li, H. Yu, X. Quan, S. Chen, and H. Zhao. 2015. Improved Photocatalytic Performance of Heterojunction by Controlling the Contact Facet: High Electron Transfer Capacity between TiO2 and the 110 Facet of BiVO4 Caused by Suitable Energy Band Alignment. Advanced Functional Materials. 25(20): 3074–3080. DOI: 10.1002/adfm.201500521.
J. Qin and H. Zeng. 2017. Photocatalysts fabricated by depositing plasmonic Ag nanoparticles on carbon quantum dots/graphitic carbon nitride for broad spectrum photocatalytic hydrogen generation. Applied Catalysis B: Environmental. 209: 161–173. DOI: 10.1016/j.apcatb.2017.03.005.
Y. A. Shaban, A. A. El Maradny, and R. Kh. Al Farawati. 2016. Photocatalytic reduction of nitrate in seawater using C/TiO2 nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry. 328: 114–121. DOI: 10.1016/j.jphotochem.2016.05.018.
L. Wang et al. 2013. Efficient photocatalytic reduction of aqueous Cr(VI) over flower-like SnIn4S8 microspheres under visible light illumination. Journal of Hazardous Materials. 244–245: 681–688. DOI: 10.1016/j.jhazmat.2012.10.062.