POTENTIAL OF TiO2: PVP COMPOSITE FILM AS SENSING ELECTRODE FOR EGFET pH SENSOR

Authors

  • Nurbaya Zainal Integrated Sensors Research Group, College of Engineering, University Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Nur Syahirah Kamarozaman Integrated Sensors Research Group, College of Engineering, University Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • Zurita Zulkifli NANO-ElecTronic Centre, College of Electrical Engineering, School of Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
  • Sukreen Hana Herman Microwave Research Institute, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

DOI:

https://doi.org/10.11113/aej.v14.21329

Keywords:

composite film, pH sensor, sensitivity, stability, sensing electrode

Abstract

A variety of uses for the commercial pH sensor have been established; one of them is figuring out the pH of plant soil. The accuracy of the commercial pH sensor and the long-term reliability of the device, however, appear to be questionable. In this paper, we demonstrate highly sensitive extended-gate field effect transistor (EGFET) pH sensors that have been examined in pH buffer solutions. The sol-gel spin coating process was employed for fabricating TiO2 films and TiO2:PVP composite films on an indium-doped tin oxide (ITO)-coated glass substrate to form two distinct sensing electrodes for the EGFET. The pH detection performance was investigated using a variety of pH buffer solutions ranging from pH2 to pH12. In contrast to TiO2 films (49.69 mV/pH), the TiO2:PVP composite films showed a higher sensitivity of 63.2 mV/pH. To evaluate the stability capabilities of the EGFET pH sensor, hysteresis and drift studies were conducted. It was found that the composite TiO2:PVP films were able to achieve a distinguished low hysteresis value of 10 mV and a low drift rate of 11 mV/h compared to TiO2 films and previous reported studies. Further analysis of repeatability measurement was carried out three times for the composite films, resulting in a constant deviation of 0.002 that corresponded to low pH values.

References

Villamizar, R. A., Maroto, A., Rius, F. X., Inza, I., and Figueras, M. J. 2008. Fast detection of Salmonella Infantis with carbon nanotube field effect transistors. Biosensensors and Bioelectronics. 24(2):279–283. DOI: 10.1016/j.bios.2008.03.046

Purwidyantri A. Lai, H. C., Tsai, S. H., Luo, J. D., Chiou, C. C., Tian, Y. C., Cheng, C. H. Lin, Y. T., and Lai, C. S. 2015. Sensing performance of fibronectin-functionalized Au-EGFET on the detection of S. epidermidis biofilm and 16S rRNA of infection-related bacteria in peritoneal dialysis. Sensors and Actuators, B: Chemical. 217: 92–99. DOI: 10.1016/j.snb.2014.11.017

Pandey, A., Gurbuz, Y., Ozguz, V., Niazi, J. H., and Qureshi, A. 2017. Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157:H7. Biosensensors and Bioelectronics. 91(2017):225–231. DOI: 10.1016/j.bios.2016.12.041

Könemund, L., Neumann, L.,Hirschberg, F. Biedendieck, R., Jahn, D., Johannes, H. H., and Kowalsky, W. 2022. Functionalization of an Extended-gate field-effect transistor (EGFET) for Bacteria Detection. Scientific Reports. 12(1): 1–10. DOI: 10.1038/s41598-022-08272-3

Khizir, H. A., and Abbas, T. A. H. 2022. Hydrothermal synthesis of TiO2 nanorods as sensing membrane for extended-gate field-effect transistor (EGFET) pH sensing applications. Sensors and Actuators A: Physical. 333(2022): 113231-40. DOI: 10.1016/j.sna.2021.113231

Manjakkal, L., Szwagierczak, D., and Dahiya, R. 2020, May. Metal oxides based electrochemical pH sensors: Current progress and future perspectives. Progress in Materials Science. 109:100635-66. DOI: 10.1016/j.pmatsci.2019.100635

Zulkefle, M. A., Herman, S. H., Abdul Rahman, R., Yusof, K. A., Rosli, A. B., Abdullah, W. F. H., and Zulkifli, Z. 2021. Evaluation on the EGFET ph sensing performance of sol-gel spin coated titanium dioxide thin film. Jurnal Teknologi. 83(4): 119 125. DOI: 10.11113/jurnalteknologi.v83.16313

Kamarozaman, N. S., Zainal, N., Rosli, A. B., Zulkefle, M. A. NIk Him, N. R., Abdullah. W. F. H., Herman, S. H., and Zulkifli, Z. 2022. Highly Sensitive and Selective Sol-Gel Spin-Coated Composite TiO2–PANI Thin Films for EGFET-pH Sensor. Gels. 8(11): 690. DOI: https://doi.org/10.3390/gels8110690

Venkatachalaiah, C., Venkataraman, U., and Sellappan, R. 2020. PANI/TiO2 nanocomposite-based chemiresistive gas sensor for the detection of E. Coli bacteria. IET Nanobiotechnology. 14(9): 761–765. DOI: 10.1049/iet-nbt.2020.0046

Zhao, R., Xu, M., Wang, J., and Chen, G. 2010. A pH sensor based on the TiO2 nanotube array modified Ti electrode. Electrochimica Acta. 55 (2010): 5647–5651. DOI: 10.1016/j.electacta.2010.04.102

Yang, C. C., Chen, K. Y., and Su, Y. K. 2019. TiO2 nano flowers based EGFET sensor for pH sensing. Coatings. 9(4): 251-257. DOI: 10.3390/coatings9040251

Li, J., Chang, S., Chang, S., and Tsai, T. 2014. Sensitivity of EGFET pH Sensors with TiO2 Nanowires. ECS Solid State Letter. 3(10): 126–129. DOI: 10.1149/2.0091410ssl

Chen, C., Zhang, Y., Gao, H., Xu, K., and Zhang, X. 2022. Fabrication of Functional Super-Hydrophilic TiO2 Thin Film for pH Detection. Chemosensors. 10(5): 182-196. DOI: 10.3390/chemosensors10050182

Sreekanth, K., Siddaiah, T., Gopal, N. O., Jyothi, N. K., Kumar, K. V., and Ramu, C. 2021, August. Thermal, Structural, Optical and Electrical Conductivity studies of pure and Mn2+ doped PVP films. South African Journal of Chemical Engineering. 36(2021): 8–16. DOI: 10.1016/j.sajce.2020.09.003.

Tang, I. H., Sundari, R., Lintang, H. O., and Yuliati, L. 2016, October. Polyvinylpyrrolidone as a new fluorescent sensor for nitrate ion. Malaysian Journal of Analytical Sciences. 20(2): 288–295. DOI: 10.17576/mjas-2016-2002-09.

Rosli, A. B., Hashim, S. B., Rahman, R. A., Herman, S. H., Abdullah, W. F. H., and Zulkifli Z. 2022, November. Correlation of ZnO Surface Morphology and Sensing Performance of EGFET Nitrate Sensor. Journal of Mechanical Engineering. 11(Special Issue 1):65–80. DOI: 10.24191/jmeche.v11i1.23586.

Vieira, N. C. S., Figueiredo, A., Faceto, A. D., De Queiroz, A. A. A., Zucolotto, V., and Guimarães, F. E. G. 2012, July. Dendrimers/TiO2 nanoparticles layer-by-layer films as extended gate FET for pH detection. Sensors and Actuators, B: Chemical. 169(2012): 397–400. DOI: 10.1016/j.snb.2012.01.003

Palit, S., Singh, K., Lou, B. S., Her, J. L., Pang, S. T., and Pan, T. M. 2020, January. Ultrasensitive dopamine detection of indium-zinc oxide on PET flexible based extended-gate field-effect transistor. Sensors and Actuators, B: Chemical. 310(2020): 127850-127858. DOI: 10.1016/j.snb.2020.127850

Al-Hardan, N. H., Abdul Hamid, M. A. Ahmed, N. M., Jalar, A. Shamsudin, R., Othman, N. K., Keng, L. K., Chiu, W., Al-Rawi, H. N. 2016. High sensitivity pH sensor based on porous silicon (PSi) extended gate field-effect transistor. Sensors (Switzerland). 16(6): 839-850. DOI: 10.3390/s16060839.

Dwivedi, P., Singh, R., and Singh, Y. C. 2020, August. Crossing the Nernst Limit (59 mV/pH) of Sensitivity Through Tunneling Transistor Based Biosensor. IEEE Sensor Journal. 21(3): 3233–3240. DOI: 10.1109/JSEN.2020.3025975.

Oh, J. Y., Jang, H. J., Cho, W. J., and Islam, M. S. 2019, April. Highly sensitive electrolyte-insulator-semiconductor pH sensors enabled by silicon nanowires with Al2O3/SiO2 sensing membrane. Sensors and Actuators, B: Chemical. 171–172(2019): 238–243. DOI: 10.1016/j.snb.2012.03.052.

Yusof, K. A., Rahman, R. A., Zulkefle, M. A., Herman, S. H., and Abdullah, W. F. H. 2016, July. EGFET pH Sensor Performance Dependence on Sputtered TiO2 Sensing Membrane Deposition Temperature. Journal of Sensors. 2016: 431-439. DOI: https://doi.org/10.1155/2016/7594531

Das, A., Ko, D. H., Chen, C. H., Chang, L. B., Lai, C. S., Chu, F. C. Chow, L., Lin, R. M. 2014, December. Highly sensitive palladium oxide thin film extended gate FETs as pH sensor. Sensors and Actuators, B: Chemical. 205(2014): 199–205. DOI: 10.1016/j.snb.2014.08.057.

Sharma, P., Singh, R., Sharma, R., Mukhiya, R., Awasthi, K., and Kumar, M. 2021, September, Palladium-oxide extended gate field effect transistor as pH sensor. Materials Letters: X. 12(2021): 100102. DOI: 10.1016/j.mlblux.2021.100102.

Shaibani, P. M., Jiang, K., Haghighat, G., Hassanpourfard, M., Etayash, H., Naicker, S. The Detection of Escherichia coli (E. coli) with the pH Sensitive Hydrogel Nanofiber-Light Addressable Potentiometric Sensor (NF-LAPS). Sensors and Actuators, B: Chemical. 226(2016): 176–183. DOI: 10.1016/j.snb.2015.11.135.

Yao, P. C., Chiang, J. L., and Lee, M. C. 2014. Application of sol-gel TiO2 film for an extended-gate H+ ion-sensitive field-effect transistor. Solid State Sciences. 28 (2014):47 54. DOI: 10.1016/j.solidstatesciences.2013.12.011

Rosli, A. B. B., Hamid, N. H. B., Zulkefle, M. A. B., Shariffudin, S. S. B., Abdullah W. F. H. B., and Herman S. H. 2023, October. Post-deposition heat treatment effect on pH sensing behavior of chemical bath deposited nanostructured zinc oxide. International Journal of Hydrogen Energy. 48(4): 1636 1648. DOI: 10.1016/j.ijhydene.2022.10.036.

Downloads

Published

2024-11-30

Issue

Section

Articles

How to Cite

POTENTIAL OF TiO2: PVP COMPOSITE FILM AS SENSING ELECTRODE FOR EGFET pH SENSOR. (2024). ASEAN Engineering Journal, 14(4), 113-119. https://doi.org/10.11113/aej.v14.21329