CFD-OPTIMIZED SAVONIUS WIND TURBINE PERFORMANCE DESIGN FOR PSA ANALYSIS
DOI:
https://doi.org/10.11113/aej.v15.21368Keywords:
Savonius, Renewable energy, Phase Shift Angle, Computational fluid dynamicsAbstract
The primary aim of this research is to enhance the accessibility of clean energy by advancing technology in energy conversion. Specifically, the focus is on optimizing the design of wind turbines equipped with Savonius rotors to maximize the generation of renewable energy. The Savonius rotor is a cross-flow rotor characterized by its uncomplicated design and ease of implementation. The performance of Savonius is significantly influenced by geometric considerations. The performance enhancement of the Savonius multi-stage is contingent upon the phase-shift angle (PSA). The present study employed three-dimensional modeling techniques with Ansys software, specifically utilizing the CFX solver. An optimization of the Savonius rotor design was conducted on a two-stage rotor, utilizing PSA variations of 0˚, 15˚, 30˚, 45˚, 60˚, 75˚ and 90˚. The technology employed in this study is computational fluid dynamics (CFD), which is performed assuming steady-state boundary conditions. The turbulent behavior of fluid flow is effectively captured by the SST turbulence model. The velocity of the fluid entrance is established at 6 m/s, while the pressure of the output is consistently maintained at 1 atm. The Savonius rotor variant, including a pitch angle angle (PSA) of 15°, demonstrates a coefficient of power of 0.32, which is widely regarded as the most ideal. The performance of the two-stage Savonius design can be further evaluated by considering its performance at angles of 0° and 30°, as it exhibits commendable performance.
References
Suharyati dkk., 2022. Indonesia Energy Outlook 2022. jakarta: Secretariate General The National Energy Council,
D. M. Prabowoputra, A. Sartomo, dan Suyitno, 2020, “The effect of pressure and temperature on biodiesel production using castor oil,” dipresentasikan pada The 5th International Conference On Industrial, Mechanical, Electrical, And Chemical Engineering 2019 (ICIMECE 2019), Surakarta, Indonesia, 030051. DOI: 10.1063/5.0000504.
A. Sartomo, D. M. Prabowoputra, dan Suyitno, 2020, “Factorial design of the effect of reaction temperature and reaction time on biodiesel production,” dipresentasikan pada The 5th International Conference On Industrial, Mechanical, Electrical, And Chemical Engineering 2019 (ICIMECE 2019), Surakarta, Indonesia, hlm. 030052. DOI: 10.1063/5.0000505.
M. I. Nadhief, D. M. Prabowoputra, S. Hadi, dan D. D. D. P. Tjahjana, “Experimental Study on the Effect of Variation of Blade Arc Angle to the Performance of Savonius Water Turbine Flow in Pipe,” International Journal of Mechanical Engineering and Robotics Research, 779–783, 2020, doi: 10.18178/ijmerr.9.5.779-783.
BPPT, 2021. Indonesia Energy Outlook 2021. Jakarta,
D. M. Prabowoputra dan A. R. Prabowo, 2022 “Effect of Geometry Modification on Turbine Performance: Mini-Review of Savonius Rotor,” International Journal of Mechanical Engineering and Robotics Research,, 777–783, DOI: 10.18178/ijmerr.11.10.777-783.
D. M. Prabowoputra, A. R. Prabowo, A. Bahatmaka, dan S. Hadi, 2020, “Analytical Review of Material Criteria as Supporting Factors in Horizontal Axis Wind Turbines: Effect to Structural Responses,” Procedia Structural Integrity, 27: 155–162, DOI: 10.1016/j.prostr.2020.07.021.
A. R. Prabowo dan D. M. Prabowoputra, 2020, “Investigation on Savonius turbine technology as harvesting instrument of non-fossil ”Theoretical and Applied Mechanics Letters 10(4): 262–269, DOI: 10.1016/j.taml.2020.01.034.
A. S. Saad, A. Elwardany, I. I. El-Sharkawy, S. Ookawara, dan M. Ahmed, 2021, “Performance evaluation of a novel vertical axis wind turbine using twisted blades in multi-stage Savonius rotors,” Energy Conversion and Management, 235: 114013, DOI: 10.1016/j.enconman.2021.114013.
D. M. Prabowoputra, A. R. Prabowo, S. Hadi, dan J. M. Sohn, 2020, “Assessment of turbine stages and blade numbers on modified 3D Savonius hydrokinetic turbine performance using CFD analysis,” Multidiscipline Modeling in Materials and Structures 17(1): 253–272, DOI: 10.1108/MMMS-12-2019-0224.
H. A. Hassan Saeed, A. M. Nagib Elmekawy, dan S. Z. Kassab, 2019, “Numerical study of improving Savonius turbine power coefficient by various blade shapes,” Alexandria Engineering Journal. 58(2): 429–441, DOI: 10.1016/j.aej.2019.03.005.
J. Chen, L. Chen, L. Nie, H. Xu, Y. Mo, dan C. Wang, 2016, “Experimental study of two-stage Savonius rotors with different gap ratios and phase shift angles,” Alexandria Engineering Journal (6): 063302, DOI: 10.1063/1.4966706.
D. M. Prabowoputra, S. Hadi, A. R. Prabowo, dan J. M. Sohn, 2020, “Performance Investigation of the Savonius Horizontal Water Turbine Accounting for Stage Rotor Design,” International Journal of Mechanical Engineering and Robotics Research. 184–189, DOI: 10.18178/ijmerr.9.2.184-189.
D. M. Prabowoputra, S. Hadi, D. D. D. Prija Tjahjana, dan M. Aziz, 2023 “Single-Factor Analysis Of Variance On The Effect Of Blade’s Number On Rotor Drag-Type Performance,” ASEAN Engineering Journal 13(4): 7–12, DOI: 10.11113/aej.v13.18651.
B. D. Altan dan M. Atılgan, 2012, “A study on increasing the performance of Savonius wind rotors,” Journal of Mechanical Science and Technology,, 26(5): 1493–1499, DOI: 10.1007/s12206-012-0313-y.
H. Eftekhari, A. Sh. M. Al-Obaidi, dan S. Eftekhari, 2021 “Aerodynamic Performance of Vertical and Horizontal Axis Wind Turbines: A Comparison Review,” Journal of Mechanical Science and Technology, 7(1): 65–88, DOI: 10.17509/ijost.v7i1.43161.
D. M. Prabowoputra, S. Hadi, A. R. Prabowo, dan J. M. Sohn, 2020. “Performance Assessment of Water Turbine Subjected to Geometrical Alteration of Savonius Rotor.,” dalam Lecture Notes in Mechanical Engineering, Springer Singapore,
I. Marinić-Kragić, D. Vučina, dan Z. Milas, 2022, “Global optimization of Savonius-type vertical axis wind turbine with multiple circular-arc blades using validated 3D CFD model,” Energy, 241: 122841, DOI: 10.1016/j.energy.2021.122841.
D. A. B. Molina, R. R. Restrepo, J. E. D. Forero, dan A. D. R. Toscano, 2021, “Computational Analysis of Different Turbulence Models in a Vane Pump Simulation,” International Journal of Mechanical Engineering and Robotics Research. 6(1): 159–182, DOI: 10.17509/ijost.v6i1.31918.
Purwanto, Budiono, Hermawan, dan D. M. Prabowoputra, 2022, “Simulation Study on Cross Flow Turbine Performance with an Angle of 20 ° to the Variation of the Number of Blades, International Journal of Mechanical Engineering and Robotics Research. 31–36, DOI: 10.18178/ijmerr.11.1.31-36.
D. M. Prabowoputra dkk., 2023, “Forecasting Effect of Blade Numbers to Cross-Flow Hydro-Type Turbine with Runner Angle 30° Using CFD and FDA Approach,” Mathematical Modelling of Engineering Problems,0(2): 419–424, DOI: 10.18280/mmep.100205.
D. M. Prabowoputra, Purwanto, dan Sutini, 2023, “The Blade’s Angle Affects Banki-Turbine Performance as an Alternative Design for Clean Energy Generation,” Mathematical Modelling of Engineering Problems, 10(1): 259–265, DOI: 10.18280/mmep.100130.
M. S. Abdullah, M. H. H. Ishak, dan F. Ismail, 2022, “Numerical study of the 3D Savonius turbine under stationary conditions,” Engineering Failure Analysis, 136: 106199, DOI: 10.1016/j.engfailanal.2022.106199.
D. Mahesa Prabowoputra, S. Hadi, J. M. Sohn, dan A. R. Prabowo, 2020, “The effect of multi-stage modification on the performance of Savonius water turbines under the horizontal axis condition,” Open Engineering, 10(1): 793–803, DOI: 10.1515/eng-2020-0085.
Md. M. Kamal dan R. P. Saini, 2023. “CFD Based Investigation on the Influence of the Darrieus Rotor Diameter in the Performance of Combined Hydrokinetic Rotor,” dalam Lecture Notes in Mechanical Engineering, Springer Singapore,
D. M. Prabowoputra dan A. R. Prabowo, 2022, “Effect of the Phase-Shift Angle on the vertical axis Savonius wind turbine performance as a renewable-energy harvesting instrument, Energy Reports, 8: 57–66, DOI: 10.1016/j.egyr.2022.06.092.
N. J. Lee, I. C. Kim, C. G. Kim, B. S. Hyun, dan Y. H. Lee, 2015, “Performance study on a counter-rotating tidal current turbine by CFD and model experimentation,” Renewable Energy, 79: 122–126, DOI: 10.1016/j.renene.2014.11.022.
J.-H. Jeong dan S.-H. Kim, 2018 “CFD investigation on the flatback airfoil effect of 10 MW wind turbine blade,” Journal of Mechanical Science and Technology, 32(5): 2089–2097. DOI: 10.1007/s12206-018-0418-z.
Dandun Mahesa Prabowoputra dkk., 2023, “Effect of Blade Angle and Number on the Performance of Bánki Hydro-Turbines: Assessment using CFD and FDA Approaches,” Evergreen, 10(1): 519–530, DOI: 10.5109/6782156.
A. R. Sánchez, J. A. S. D. Rio, dan T. Pujol, 2021 “Numerical Study and Theoretical Comparison of Outlet Hole Geometry for a Gravitational Vortex Turbine,” Indonesian Journal of Science and Technology. 6(3): 491–506, DOI: 10.17509/ijost.v6i3.38951.
S. Roy dan U. K. Saha, 2015, “Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine,” Apply Energy, 137: 117–125, DOI: 10.1016/j.apenergy.2014.10.022.
S. Darmawan, K. Raynaldo, dan A. Halim, 2022, “Investigation of Thruster Design to Obtain the Optimum Thrust for ROV (Remotely Operated Vehicle) Using CFD,” Evergreen, 9(1): 115–125, DOI: 10.5109/4774224.