ASSESSMENT OF POWDER MYCO-COAGULANT EXTRACTED FROM PHANEROCHAETE CONCRESCENS FOR WATER TREATMENT

Authors

  • Radhia Nedjai Cataclysmic Management and Sustainable Development Research Group (CAMSDE), Department of Civil Engineering, Faculty of Engineering, International Islamic University Malaysia (IIUM), 53100 Kuala Lumpur, Malaysia.
  • Abdullah Al Mamun Department of Biology, Faculty of Science, Badji Mokhtar University, 23000 Annaba, Algeria
  • Md Zahangir Alam Bioenvironmental Engineering Research Centre (BERC), Department of Chemical Engineering and Sustainability, Faculty of Engineering, International Islamic University Malaysia (IIUM), 53100 Kuala Lumpur, Malaysia.

DOI:

https://doi.org/10.11113/aej.v15.21469

Keywords:

Powder Myco-Coagulant, Phanerochaete concrescens, Turbidity removal, Solid-State Fermentation

Abstract

Bio-coagulants are attracting current research interest because they are more environmentally friendly and safer than traditional chemical coagulants. However, the main challenge for bio-coagulants is the production in bulk quantities at a reasonable cost. The main purpose of this study was to investigate the ability of Phanerochaete concrescens to produce an effective bio-coagulant in powder form. The one-factor-at-a-time approach (OFAT) was performed to evaluate the capacity of the powdered myco-coagulant for various initial turbidities and coagulant doses. The morphological structure, functional groups and crystallinity of the bio-coagulant were evaluated using scanning electron microscope (SEM), Fourier transform infrared (FTIR) and X-ray diffractometry (XRD), respectively. The addition of 0.09-0.11 g of powder myco-coagulant led to the maximum elimination of turbidity from synthetic kaolin wastewater, which was 80 % from an initial turbidity value of 750±10 NTU. SEM revealed that the fungus that produced the coagulant has a filamentous and linked network structure. FTIR illustrated the presence of hydroxyl, carbonyl, carboxyl, methoxyl and amino groups. The XRD analysis revealed the bio-coagulant to have smaller particle sizes with wider peaks. Based on the findings, Phanerochaete concrescens may find use in industry as a producer of powder bio-coagulants.

References

Kurniawan, S. B., Imron, M. F., Chik, C. E. N. C. E., Owodunni, A. A., Ahmad, A., Alnawajha, M. M., Rahim, N. F. M., Said, N. S. M., Abdullah, S. R. S., Kasan, N. A., Ismail, S., Othman, A. R., & Hasan, H. A. 2022. What compound inside biocoagulants/bioflocculants is contributing the most to the coagulation and flocculation processes? Science of The Total Environment 806. DOI : https://doi.org/10.1016/j.scitotenv.2021.150902.

Sharma, S., & Bhattacharya, A. 2017. Drinking water contamination and treatment techniques. Applied Water Science. 7 1043–67. https://doi.org/10.1007/s13201-016-0455-7.

Adnan, O., Abidin, Z. Z., Idris, A., Kamarudin, S., & Al-Qubaisi, M. S. 2017. A novel biocoagulant agent from mushroom chitosan as water and wastewater therapy. Environmental Science and Pollution Research. 24 20104–12. DOI : https://doi.org/10.1007/s11356-017-9560-x.

Nedjai, R., Al-Mamun, A., & Alam, M. Z. 2024. Effects of initial turbidity and myco-coagulant dose on the effectiveness of the coagulation process in water treatment. Applied Chemical Engineering, 7(2): 1546-1546. DOI: https://doi.org/10.59429/ace.v7i2.1546

Ahmad, N. S. B., Mamun, A. A., & Nedjai, R. 2023. Assessment of expired coagulant for water treatment. In AIP Conference Proceedings. 2713(1). AIP Publishing. DOI : https://doi.org/10.1063/5.0129719.

Ang, T-H., Kiatkittipong, K., Kiatkittipong, W., Chua, S-C., Lim, J. W., Show, P-L., Bashir, M. J. K., & Ho, Y-C. 2020. Insight on Extraction and Characterisation of Biopolymers as the Green Coagulants for Microalgae Harvesting Water. 12(5): 1–31.

Ramavandi, B. 2014. Treatment of water turbidity and bacteria by using a coagulant extracted from Plantago ovata Water Resources and Industry 6: 36–50. DOI: https://doi.org/10.1016/j.wri.2014.07.001.

Freitas, T. K. F. S., Oliveira, V. M., de Souza, M. T. F., Geraldino, H. C. L., Almeida, V. C., Fávaro, S. L., & Garcia, J. C. 2015. Optimization of coagulation-flocculation process for treatment of industrial textile wastewater using okra (A. esculentus) mucilage as natural coagulant Industrial Crops and Products. 76: 538–44. DOI: https://doi.org/10.1016/j.indcrop.2015.06.027.

Al Mamun, A., Nedjai, R., and Alam M. Z., 2023. Scaling up the production of myco-coagulant using solid-state fermentation for water treatment. Malaysian Journal of Microbiology, 19(6): 777-785. DOI: http://dx.doi.org/10.21161/mjm.230025

Galadima, A. I., Salleh, M. M., Hussin, H., Mohd Safri, N., Mohd Noor, R., Chong, C. S., Yahya, A., Mohamad, S. E., Abd-Aziz, S., Yusof, N. N. M., Abu Naser, M., & Al-Junid, A. F. M. 2020. One-Step Conversion of Lemongrass Leaves Hydrolysate to Biovanillin by Phanerochaete chrysosporium ATCC 24725 in Batch Culture Waste and Biomass Valorization. 11: 4067–80. DOI : https://doi.org/10.1007/s12649-019-00730-w.

Nwodo, U. U., Green, E., Mabinya, L. V., Okaiyeto, K., Rumbold K., Obi, L. C., & Okoh, A. I. 2014. Bioflocculant production by a consortium of Streptomyces and Cellulomonas species and media optimization via surface response model Colloids Surfaces B Biointerfaces. 116. 257–64. DOI: https://doi.org/10.1016/j.colsurfb.2014.01.008.

Okaiyeto, K., Nwodo, U. U., Mabinya, L. V., Okoli, A. S., & Okoh, A. I. 2015. Characterization of a bioflocculant (MBF-UFH) produced by bacillus sp. AEMREG7 International Journal of Molecular Sciences. 16: 12986–3003. https://doi.org/10.3390/ijms160612986.

Mabrouk, M. E. 2014. Production of bioflocculant by the marine actinomycete Nocardiopsis aegyptia sp Life Science Journal 11: 27–35

Arunkumar, P., Sadish Kumar, V., Saran, S., Bindun, H., & Devipriya, S. P., 2019. Isolation of active coagulant protein from the seeds of Strychnos potatorum–a potential water treatment agent Environmental Technology. 40(12): 1624–1632. DOI: https://doi.org/10.1080/09593330.2018.1427798.

Baptista, A. T. A., Silva, M. O., Gomes, R. G., Bergamasco, R., Vieira, M. F., & Vieira, A. M. S. 2017. Protein fractionation of seeds of Moringa oleifera lam and its application in superficial water treatment Separation and Purification Technology. 180: 114–24.

DOI : https://doi.org/10.1016/j.seppur.2017.02.040.

Zainol, N. A., Goh, H. T., & Syed, Zainal, S. F. F. 2021. Effectiveness of Mushroom (Pleurotus Pulmonarius) Waste as Natural Coagulant for Kaolin Synthetic Water via Coagulation-Flocculation Process IOP Conference Series: Earth and Environmental Science. 920. DOI: https://doi.org/10.1088/1755-1315/920/1/012020.

Pathak, M., Sarma, H. K., Bhattacharyya, K. G., Subudhi, S., Bisht, V., Lal, B., & Devi, A. 2017. Characterization of a novel polymeric bioflocculant produced from bacterial utilization of n-hexadecane and its application in removal of heavy metals Frontiers in microbiology 8: 1–15. DOI : https://doi.org/10.3389/fmicb.2017.00170.

Nie, Y., Wang, Z., Zhang, R., Ma, J., Zhang, H., Li, S., & Li, J. 2021 Aspergillus oryzae, a novel eco-friendly fungal bioflocculant for turbid drinking water treatment Separation and Purification Technology. 279: 119669. DOI: https://doi.org/10.1016/j.seppur.2021.119669.

Tsilo, P. H., Basson, A. K., Ntombela, Z. G., Maliehe, T. S., & Pullabhotla, R. V. S. R. 2021. Isolation and Optimization of Culture Conditions of a Bioflocculant-Producing Fungi from Kombucha Tea SCOBY Microbiology Research. 12: 950–66.

DOI : https://doi.org/10.3390/microbiolres12040070.

Gaikwad, V. T. & Munavalli, G. R. 2019. Turbidity removal by conventional and ballasted coagulation with natural coagulants Applied Water Science 9: 1–9. DOI: https://doi.org/10.1007/s13201-019-1009-6.

Asrafuzzaman, M., Fakhruddin, A. N. M., & Hossain, M. A. 2011. Reduction of Turbidity of Water Using Locally Available Natural Coagulants ISRN Microbiol. 2011: 1–6. DOI : https://doi.org/10.5402/2011/632189.

Kurniawan, S. B., Abdullah, S. R. S., Othman, A. R., Purwanti, I. F., Imron, M. F., Ismail, N. I., Ahmad, A., & Hasan, H. A. 2021. Isolation and characterisation of bioflocculant-producing bacteria from aquaculture effluent and its performance in treating high turbid water Journal of Water Process Engineering. 42: 102194. DOI: https://doi.org/10.1016/j.jwpe.2021.102194.

Nkurunziza, T., Nduwayezu, J. B., Banadda, E. N., & Nhapi, I. 2009. The effect of turbidity levels and Moringa oleifera concentration on the effectiveness of coagulation in water treatment Water Science and Technology. 59: 1551–8. DOI: https://doi.org/10.2166/wst.2009.155.

Downloads

Published

2025-02-28

Issue

Section

Articles

How to Cite

ASSESSMENT OF POWDER MYCO-COAGULANT EXTRACTED FROM PHANEROCHAETE CONCRESCENS FOR WATER TREATMENT. (2025). ASEAN Engineering Journal, 15(1), 57-63. https://doi.org/10.11113/aej.v15.21469