KINETIC AND TECHNO-ECONOMIC EVALUATION OF BACTERIAL CELLULOSE PRODUCTION FROM PAPAYA PEEL
DOI:
https://doi.org/10.11113/aej.v15.22066Keywords:
bacterial cellulose, kinetic, papaya, techno-economicAbstract
Papaya peel is a fruit waste that was usually dumped into the environment. One way to utilize papaya peel waste was to convert it into a fermented product like bacterial cellulose. In this study, the effect of various bacterial cellulose nitrogen sources such as bean sprouts, coconut milk and urea food grade were used to produce bacterial cellulose from papaya peel. In addition, the determination of the bacterial cellulose kinetic parameters and techno-economic analysis were also evaluated. The results from this research showed that urea food grade as nitrogen source produced highest bacterial cellulose. Longer fermentation time produced higher bacterial cellulose and lower water content in bacterial cellulose production. From kinetic model optimization with bacterial cellulose data, kinetic parameters such as maximum specific growth rate (µmax), monod constant (Ks), cell death rate constant (Kd), and cell maintenance constant (m) were 0.06 (day-1), 1.25 (g/L), 0.117 (day-1), and 0.568 (day-1). Techno-economic evaluation showed that bacterial cellulose production with recycle medium stage produced high profitability. Profitability parameters value such as return of investment (ROI), payback period (PBP), net present value (NPV), and internal rate of return (IRR) were 75.92%, 1.01 years, US$ 1,839,257,209, and 76.94%. This research showed that higher bacterial cellulose yield can be produced from papaya peel waste and urea food grade. Techno-economic simulations showed that large-scale production of bacterial cellulose from papaya peel waste can be profitable by recycle the fermentation medium.
References
J. P. Maran and K. A. Prakash, 2015. “Process variables influence on microwave assisted extraction of pectin from waste Carcia papaya L. peel,” International Journal of Biological Macromolecules, 73: 202–206, DOI: 10.1016/j.ijbiomac.2014.11.008.
J. Balavijayalakshmi and V. Ramalakshmi, 2017. “Carica papaya peel mediated synthesis of silver nanoparticles and its antibacterial activity against human pathogens,” Journal of Applied Research and Technology, 15(5): 413–422, DOI: 10.1016/j.jart.2017.03.010.
J. Nieto Calvache, M. Cueto, A. Farroni, M. de Escalada Pla, and L. N. Gerschenson, 2016. “Antioxidant characterization of new dietary fiber concentrates from papaya pulp and peel (Carica papaya L.),” Journal of Functional Foods, 27: 319–328, DOI: 10.1016/j.jff.2016.09.012.
O. Parniakov, F. J. Barba, N. Grimi, N. Lebovka, and E. Vorobiev, 2014. “Impact of pulsed electric fields and high voltage electrical discharges on extraction of high-added value compounds from papaya peels,” Food Research International, 65(PC): 337–343, DOI: 10.1016/j.foodres.2014.09.015.
W. Zhang et al., 2017. “Properties of soluble dietary fiber-polysaccharide from papaya peel obtained through alkaline or ultrasound-assisted alkaline extraction,” Carbohydrate Polymers, 172: 102–112, DOI: 10.1016/j.carbpol.2017.05.030.
S. O. Dahunsi, S. Oranusi, J. B. Owolabi, and V. E. Efeovbokhan, 2016. “Mesophilic anaerobic co-digestion of poultry dropping and Carica papaya peels: Modelling and process parameter optimization study,” Bioresource Technology, 216: 587–600, DOI: 10.1016/j.biortech.2016.05.118.
S. Abbaszadeh, S. R. Wan Alwi, C. Webb, N. Ghasemi, and I. I. Muhamad, 2016. “Treatment of lead-contaminated water using activated carbon adsorbent from locally available papaya peel biowaste,” Journal of Cleaner Production, 118: 210–222, DOI: 10.1016/j.jclepro.2016.01.054.
C. S. Pavithra, S. S. Devi, J. W. Suneetha, and C. V Durga Rani, 2017. “Nutritional properties of papaya peel,” The Pharma Innovation Journal, 6(7): 170–173, [Online]. Available: https://www.researchgate.net/profile/Jessie_Suneetha_W/publication/324202436_Nutritional_properties_of_papaya_peel/links/5ac779584585151e80a3a216/Nutritional-properties-of-papaya peel.pdf%0Awww.thepharmajournal.com Retrieve Date January 29, 2024
M. Didier, A. Kouassi, K. K. Hubert, K. E. Jean Parfait, and T. Kablan, 2017. “Phytochemical Properties and Proximate Composition of Papaya (Carica papaya L. var solo 8) Peels,” Turkish Journal of Agriculture - Food Science and Technology, 5(6): 676–680, DOI: 10.24925/turjaf.v5i6.676-680.1154.
P. Chaiwut, P. Pintathong, and S. Rawdkuen, 2010. “Extraction and three-phase partitioning behavior of proteases from papaya peels,” Process Biochemistry, 45(7): 1172–1175, DOI: 10.1016/j.procbio.2010.03.019.
S. O. Dahunsi, S. Oranusi, and V. E. Efeovbokhan, 2017. “Cleaner energy for cleaner production: Modeling and optimization of biogas generation from Carica papayas (Pawpaw) fruit peels,” Journal of Cleaner Production, 156: 19–29, DOI: 10.1016/j.jclepro.2017.04.042.
M. K. Patidar, S. Nighojkar, A. Kumar, and A. Nighojkar, 2016. “Papaya peel valorization for production of acidic pectin methylesterase by Aspergillus tubingensis and its application for fruit juice clarification,” Biocatalysis and Agricultural Biotechnology, 6: 58–67, DOI: 10.1016/j.bcab.2016.02.008.
Sulaeva, U. Henniges, T. Rosenau, and A. Potthast, 2015. “Bacterial cellulose as a material for wound treatment: Properties and modifications: A review,” Biotechnology Advances, 33(8): 1547–1571, DOI: 10.1016/j.biotechadv.2015.07.009.
M. L. Foresti, A. Vázquez, and B. Boury, 2017. “Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: A review of recent advances,” Carbohydrate Polymers, 157: 447–467, DOI: 10.1016/j.carbpol.2016.09.008.
J. Wang, J. Tavakoli, and Y. Tang, 2019. “Bacterial cellulose production, properties and applications with different culture methods – A review,” Carbohydrate Polymers, 219: 63–76, DOI: 10.1016/j.carbpol.2019.05.008.
G. F. Picheth et al., 2017. “Bacterial cellulose in biomedical applications: A review,” International Journal of Biological Macromolecules, 104: 97–106, DOI: 10.1016/j.ijbiomac.2017.05.171.
R. T. Bianchet, A. L. Vieira Cubas, M. M. Machado, and E. H. Siegel Moecke, 2020. “Applicability of bacterial cellulose in cosmetics – bibliometric review,” Biotechnology Reports, vol. 27, p. e00502, DOI: 10.1016/j.btre.2020.e00502.
N. Sriplai and S. Pinitsoontorn, 2021. “Bacterial cellulose-based magnetic nanocomposites: A review,” Carbohydrate Polymers, 254: 117228, DOI: 10.1016/j.carbpol.2020.117228.
N. Yodsuwan, A. Owatworakit, A. Ngaokla, N. Tawichai, and N. Soykeabkaew, 2012. “Effect of carbon and nitrogen sources on bacterial cellulose production for bionanocomposite materials,” 1st MFUIC 2012,
R. N. Alfian, N. I. Choirunnisa, B. Susilo, and Sandra, 2023. “Effect of storage temperatures treatment of coconut flesh (Cocos nucifera L.) based on the quality of coconut milk,” IOP Conference Series: Earth and Environmental Science, 1200(1) DOI: 10.1088/1755-1315/1200/1/012059.
A. I. Latunra, S. R. S. Anggraini, M. Tuwo, and Baharuddin, 2020. “Effect of green bean sprout extract on in vitro shoot multiplication of taro Colocasia esculenta L. var. antiquorum,” ” IOP Conference Series: Earth and Environmental Science 486(1), DOI: 10.1088/1755-1315/486/1/012105.
M. Hornung, M. Ludwig, and H. P. Schmauder, 2007. “Optimizing the production of bacterial cellulose in surface culture: A novel aerosol bioreactor working on a fed batch principle (Part 3),” Engineering Life Science, 7(1): 35–41, DOI: 10.1002/elsc.200620164.
M. A. Taylor, 1999. “A kinetic study of bacterial cellulose production by a batch process,” Faculty of Graduate Studies, University of Western Ontario,
Y. A. Aydin and N. D. Aksoy, 2015. “Kinetic modelling of bacterial cellulose production by Gluconacetobacter hansenii P2A,” Anadolu University,
N. N. Sulaiman, N. Abd. Rahman, and F. Esa, 2018. “Monitoring Production of Bacterial Cellulose by Acetobacter xylinum 0416 with Fuzzy Logic via Simulation,” Jurnal Kejuruteraan, si1(7): 21–26, DOI: 10.17576/jkukm-2018-si1(7)-03.
A. Budhiono, B. Rosidi, H. Taher, and M. Iguchi, 1999. “Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system,” Carbohydrate Polymers, 40(2): 137–143, DOI: 10.1016/S0144-8617(99)00050-8.
F. Dourado, A. Fontão, M. Leal, A. Cristina Rodrigues, and M. Gama, 2016. Process Modeling and Techno-Economic Evaluation of an Industrial Bacterial NanoCellulose Fermentation Process. Elsevier B.V., doi: 10.1016/B978-0-444-63458-0.00012-3.
H. S. Fogler, Elements of Chemical Reaction Engineering, Fifth Edit. Prentice Hall International, 2006.
M. S. Peters, K. D. Timmerhaus, and R. E. West, 2003. Plant design and economics for chemical engineers, 5 Edition. McGraw-Hill,
S. J. Santosa and Priyono, 2023. “The Scientific Study of Urea Fertilizer and Cow Manure Composition on the Growth and Yield of Kailan Plants,” Journal of Multidisciplinary Research, 2: 20–31, DOI: 10.56943/jmr.v2i1.233.
N. Arifiani, T. A. Sani, and A. Y. U. S. Utami, “Peningkatan kualitas nata de cane dari limbah nira tebu metode Budchips dengan penambahan ekstrak tauge sebagai sumber nitrogen,” Bioteknologi, 12(2): 29–33, 2015, doi: 10.13057/biotek/c120201.
U. Patil and S. Benjakul, 2018. “Coconut Milk and Coconut Oil: Their Manufacture Associated with Protein Functionality,” Journal of Food Science, 83(8): 2019–2027, DOI: 10.1111/1750-3841.14223.
S. Hesse and T. Kondo, 2005. “Behavior of cellulose production of Acetobacter xylinum in 13C-enriched cultivation media including movements on nematic ordered cellulose templates,” Carbohydrate Polymers, 60(4): 457–465, DOI: 10.1016/j.carbpol.2005.02.018.
R. Jonas and L. F. Farah, 1998. “Production and application of microbial cellulose,” Polymer Degradation and Stability, 59(1–3): 101–106, DOI: 10.1016/S0141-3910(97)00197-3.
J. R. Colvin and G. G. Leppard, 1977. “The biosynthesis of cellulose by Acetobacter xylinum and Acetobacter acetigenus,” Canadian Journal of Microbiology, 23(6): 701–709, DOI: 10.1139/m77-105.
R. Silhavy, P. Silhavy, and Z. Prokopova, 2021. “Using actors and use cases for software size estimation,” Electronics, 10(5): 1–21, DOI: 10.3390/electronics10050592.
K. C. Cheng, J. M. Catchmark, and A. Demirci, 2009. “Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis,” Journal of Biological Engineering, 3: 1–10, DOI: 10.1186/1754-1611-3-12.
M. Ariyanti, P. Purwanto, and S. Suherman, 2014. “Analysis of Cleaner Production Implementation for Greening Nata De Coco Industry,” Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 5(2): 45–50.