BANDWIDTH AND GAIN PERFORMANCE OF REFLECTARRAY ANTENNAS FOR 5G COMMUNICATIONS: A REVIEW
DOI:
https://doi.org/10.11113/aej.v15.22408Keywords:
Bandwidth, Gain Performance , Reflectarray Antennas for 5G Communicati, A ReviewAbstract
The increasing necessity for quicker data rates in various applications is resulting in the development of future 5G/6G communication systems that possess a wider operating bandwidth. This requires the construction of appropriate antennas to meet specific parameters. Reflectarrays are being considered for 5G/6G systems because of its benefits such as because of its high gain, beam shaping, beam scanning, reconfigurability, and multi-beam capabilities. Reflectarrays are effective, although their narrowband nature has limited their use. This work comprehensively investigates the present condition of broadband reflectarrays. Wideband reflectarrays are evaluated and categorized according to four wideband phase tuning techniques. The bandwidth is analyzed and contrasted between a unit cell and reflectarray system, emphasizing the gain-bandwidth performance. Different wideband unit cell shapes are examined and categorized based on the method used for wideband phase adjustment. An analysis is conducted on how different wideband phase tuning methods affect the gain-bandwidth performance of reflectarrays. Factors taken into consideration include operating frequency, reflection phase range, substrate structure and material, aperture size, aperture efficiency (AE), focal distance, cross-polarization performance, gain, and side lobe levels. Comparisons are made between several phase tuning methods, and recommendations are given for creating reflectarrays with broad gain-bandwidth.
References
Q. Bi, 2019, “Ten Trends in the Cellular Industry and an Outlook on 6G,” IEEE Communications Magazine, 57(12): 31–36, DOI: 10.1109/MCOM.001.1900315.
M. H. Dahri, M. I. Abbasi, M. H. Jamaluddin, and M. R. Kamarudin, 2018, “A Review of High Gain and High Efficiency Reflectarrays for 5G Communications,” IEEE Access, 6: 5973–5985, DOI: 10.1109/ACCESS.2017.2786862.
S. V. Hum and J. Perruisseau-Carrier, 2014, “Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review,” IEEE Transactions on Antennas and Propagation, 62(1): 183–198, DOI: 10.1109/TAP.2013.2287296.
J. Zhu, S. Liao, S. Li, and Q. Xue, 2022, “Additively Manufactured Metal-Only Millimeter-Wave Dual Circularly Polarized Reflectarray Antenna with Independent Control of Polarizations,” IEEE Transactions on Antennas and Propagation, 70(10): 9918–9923, DOI: 10.1109/TAP.2022.3184474.
Y. Mao, S. Xu, F. Yang, and A. Z. Elsherbeni, 2015, “A Novel Phase Synthesis Approach for Wideband Reflectarray Design,” IEEE Transactions on Antennas and Propagation, 63(9): 4189–4193, DOI: 10.1109/TAP.2015.2447005.
S. Costanzo, F. Venneri, A. Borgia, and G. Di Massa, 2020, “Dual-Band Dual-Linear Polarization Reflectarray for mmWaves/5G Applications,” IEEE Access, 8: 78183–78192, DOI: 10.1109/ACCESS.2020.2989581.
P. Mei, S. Zhang, and G. F. Pedersen, 2020, “A Low-Cost, High-Efficiency and Full-Metal Reflectarray Antenna with Mechanically 2-D Beam-Steerable Capabilities for 5G Applications,” IEEE Transactions on Antennas and Propagation, 68(10): 6997–7006, DOI: 10.1109/TAP.2020.2993077.
S. Costanzo, F. Venneri, A. Borgia, and G. Di Massa, 2019, “A Single-Layer Dual-Band Reflectarray Cell for 5G Communication Systems,” International Journal of Antennas and Propagation, 2019: 8–11, DOI: 10.1155/2019/9479010.
R. R. Elsharkawy, M. Hindy, A. A. Saleeb, and E. S. M. El-Rabaie, 2017, “A Reflectarray with Octagonal Unit Cells for 5G Applications,” Wireless Personal Communications, 97(2): 2999–3016, DOI: 10.1007/s11277-017-4657-6.
R. Elsharkawy, A. R. Sebak, M. Hindy, O. M. Haraz, A. Saleeb, and E. S. M. El-Rabaie, 2015, “Single Layer Polarization Independent Reflectarray Antenna for Future 5G Cellular Applications,” 2015 International Conference on Information and Communication Technology Research (ICTRC), 9–12. DOI: 10.1109/ICTRC.2015.7156408.
K. M. Mak, H. W. Lai, K. M. Luk, and C. H. Chan, 2014, “Circularly Polarized Patch Antenna for Future 5G Mobile Phones,” IEEE Access, 2: 1521–1529, DOI: 10.1109/ACCESS.2014.2382111.
M. H. Dahri, M. H. Jamaluddin, M. I. Abbasi, and M. R. Kamarudin, 2017, “A Review of Wideband Reflectarray Antennas for 5G Communication Systems,” IEEE Access, 5: 17803–17815, DOI: 10.1109/ACCESS.2017.2747844.
J. A. Encinar et al., 2018, “Dual-Polarization Reflectarray in Ku-Band Based on Two Layers of Dipole Arrays for a Transmit-Receive Satellite Antenna with South American Coverage,” International Journal of Microwave and Wireless Technologies, 10(2): 149–159, DOI: 10.1017/S1759078717001209.
R. Florencio, J. A. Encinar, R. R. Boix, V. Losada, and G. Toso, 2015, “Reflectarray Antennas for Dual Polarization and Broadband Telecom Satellite Applications,” IEEE Transactions on Antennas and Propagation, 63(4): 1234–1246, DOI: 10.1109/TAP.2015.2391279.
M. R. Chaharmir and J. Shaker, 2015, “Design of a Multilayer X-/Ka-Band Frequency-Selective Surface-Backed Reflectarray for Satellite Applications,” IEEE Transactions on Antennas and Propagation, 63(4): 1255–1262, DOI: 10.1109/TAP.2015.2389838.
S. Montori et al., 2015, “A Transportable Reflectarray Antenna for Satellite Ku-Band Emergency Communications,” IEEE Transactions on Antennas and Propagation, 63(4): 1393–1407, DOI: 10.1109/TAP.2015.2398128.
J. A. Encinar, M. Arrebola, L. F. De La Fuente, and G. Toso, 2011, “A Transmit-Receive Reflectarray Antenna for Direct Broadcast Satellite Applications,” IEEE Transactions on Antennas and Propagation, 59(9): 3255–3264, DOI: 10.1109/TAP.2011.2161449.
W. Li, H. Tu, Y. He, L. Zhang, S. W. Wong, and S. Gao, 2023, “A Novel Wideband Tightly Coupled Dual-Polarized Reflectarray Antenna,” IEEE Transactions on Antennas and Propagation, 71(6): 5422–5427, DOI: 10.1109/TAP.2023.3262969.
J. Liang and Y. Liu, 2019, “A Novel Microstrip Reflectarray Antenna with Ultra-Wideband Feed,” 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 1–3, DOI: 10.1109/CSQRWC.2019.8799139.
K. K. Karnati, Y. Shen, M. E. Trampler, S. Ebadi, P. F. Wahid, and X. Gong, 2015, “A BST-Integrated Capacitively Loaded Patch for Ka- and X-Band Beamsteerable Reflectarray Antennas in Satellite Communications,” IEEE Transactions on Antennas and Propagation, 63(4): 1324–1333, DOI: 10.1109/TAP.2015.2389252.
X. Yang et al., 2017, “A Broadband High-Efficiency Reconfigurable Reflectarray Antenna Using Mechanically Rotational Elements,” IEEE Transactions on Antennas and Propagation, 65(8): 3959–3966, DOI: 10.1109/TAP.2017.2708079.
R. S. Hao, Y. J. Cheng, Y. F. Wu, and Y. Fan, 2021, “A W-Band Low-Profile Dual-Polarized Reflectarray with Integrated Feed for In-Band Full-Duplex Application,” IEEE Transactions on Antennas and Propagation, 69(11): 7222–7230, DOI: 10.1109/TAP.2021.3109641.
M. I. Abbasi, M. Y. Ismail, M. R. Kamarudin, and Q. H. Abbasi, 2021, “Reconfigurable Reflectarray Antenna: A Comparison between Design Using PIN Diodes and Liquid Crystals,” Wireless Communications and Mobile Computing, 2021: 2835638, DOI: 10.1155/2021/2835638.
T. S. Rappaport et al., 2013, “Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!,” IEEE Access, 1: 335–349, DOI: 10.1109/ACCESS.2013.2260813.
X. Li, X. Li, Y. Y. Luo, G. M. Wei, and X. J. Yi, 2021, “A Novel Single Layer Wideband Reflectarray Design Using Two Degrees of Freedom Elements,” IEEE Transactions on Antennas and Propagation, 69(8): 5095–5099, DOI: 10.1109/TAP.2021.3060098.
C. Han, Y. Zhang, and Q. Yang, 2017, “A Broadband Reflectarray Antenna Using Triple Gapped Rings with Attached Phase-Delay Lines,” IEEE Transactions on Antennas and Propagation, 65(5): 2713–2717, DOI: 10.1109/TAP.2017.2679493.
H. Huang and Z. Shen, 2019, “Low-RCS Reflectarray with Phase Controllable Absorptive Frequency-Selective Reflector,” IEEE Transactions on Antennas and Propagation, 67(1): 190–198, DOI: 10.1109/TAP.2018.2876708.
M. R. Chaharmir, J. Shaker, N. Gagnon, and D. Lee, 2010, “Design of Broadband, Single Layer Dual-Band Large Reflectarray Using Multi Open Loop Elements,” IEEE Transactions on Antennas and Propagation, 58(9): 2875–2883, DOI: 10.1109/TAP.2010.2052568.
L. Wen, S. Gao, Q. Luo, W. Hu, B. Sanz-Izquierdo, and X. X. Yang, 2023, “Wideband Circularly Polarized Reflectarray Antenna Using Rotational Symmetrical Crossed Dipoles,” IEEE Transactions on Antennas and Propagation, 71(5): 4576–4581, DOI: 10.1109/TAP.2023.3247943.
N. E. W. U. S. E. Cases, 2021, “ALL THINGS 5G NR mmWAVE.”
W. Menzel, J. Li, and S. Dieter, 2009, “Folded Reflectarray Antenna Based on a Single Layer Reflector with Increased Phase Angle Range,” European Conference on Antennas and Propagation (EuCAP), 2757–2760.
E. Carrasco, J. A. Encinar, and M. Barba, 2007, “Wideband Reflectarray Antenna Using True-Time Delay Lines,” IET Seminar Digest, 2007(11961).
H. T. Xu, D. F. Guan, S. J. Yu, J. H. Tian, X. Y. Chen, and B. Peng, 2022, “Design of Reconfigurable Reflectarray Antenna with Wideband Beam Scanning,” 2022 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1–3, DOI: 10.1109/ICMMT55580.2022.10022612.
W. An, S. Xu, F. Yang, and J. Gao, 2014, “A Ka-Band Reflectarray Antenna Integrated with Solar Cells,” IEEE Transactions on Antennas and Propagation, 62(11): 5539–5546, DOI: 10.1109/TAP.2014.2354424.
W. Han, F. Yang, J. Ouyang, and P. Yang, 2015, “Low-Cost Wideband and High-Gain Slotted Cavity Antenna Using High-Order Modes for Millimeter-Wave Application,” IEEE Transactions on Antennas and Propagation, 63(11): 4624–4631, DOI: 10.1109/TAP.2015.2473658.
M. H. Dahri, M. R. Kamarudin, M. H. Jamaluddin, M. Inam, and R. Selvaraju, 2017, “Broadband Resonant Elements for 5G Reflectarray Antenna Design,” Telkomnika (Telecommunication Computing Electronics and Control), 15(2): 793–798, DOI: 10.12928/TELKOMNIKA.v15i2.6122.
L. Guo, H. Yu, W. Che, and W. Yang, 2019, “A Broadband Reflectarray Antenna Using Single-Layer Rectangular Patches Embedded with Inverted L-Shaped Slots,” IEEE Transactions on Antennas and Propagation, 67(5): 3132–3139, DOI: 10.1109/TAP.2019.2900382.
W. Wu, K. D. Xu, Q. Chen, T. Tanaka, M. Kozai, and H. Minami, 2022, “A Wideband Reflectarray Based on Single-Layer Magneto-Electric Dipole Elements with 1-Bit Switching Mode,” IEEE Transactions on Antennas and Propagation, 70(12): 12346–12351, DOI: 10.1109/TAP.2022.3209693.
P. Mei, S. Zhang, Y. Cai, X. Q. Lin, and G. F. Pedersen, 2019, “A Reflectarray Antenna Designed with Gain Filtering and Low-RCS Properties,” IEEE Transactions on Antennas and Propagation, 67(8): 5362–5371, DOI: 10.1109/TAP.2019.2911342.
P. Y. Qin, Y. J. Guo, and A. R. Weily, 2016, “Broadband Reflectarray Antenna Using Subwavelength Elements Based on Double Square Meander-Line Rings,” IEEE Transactions on Antennas and Propagation, 64(1): 378–383, DOI: 10.1109/TAP.2015.2502978.
J. Zhao, C. Fu, H. Li, F. Li, and X. Hu, 2022, “A Single-Layer Broadband Ka-Band Reflectarray Using Novel Windmill Elements,” IEEE Transactions on Antennas and Propagation, 70(11): 11167–11171, DOI: 10.1109/TAP.2022.3191442.
P. Callaghan and P. R. Young, 2022, “Beam- and Band-Width Broadening of Intelligent Reflecting Surfaces Using Elliptical Phase Distribution,” IEEE Transactions on Antennas and Propagation, 70(10): 8825–8832, DOI: 10.1109/TAP.2022.3199451.
T. Smith, U. Gothelf, O. S. Kim, and O. Breinbjerg, 2014, “An FSS-Backed 20/30 GHz Circularly Polarized Reflectarray for a Shared Aperture L- and Ka-Band Satellite Communication Antenna,” IEEE Transactions on Antennas and Propagation, 62(2): 661–668, DOI: 10.1109/TAP.2013.2292692.
M. Y. Zeain, M. Abu, and S. N. Zabri, 2018, “Investigation of Printed Helical Antenna Using Varied Materials for Ultra-Wide Band Frequency,” Journal of Telecommunication, Electronic and Computer Engineering, 10(2–7): 137–142.
M. Teng, S. Yu, and N. Kou, 2023, “A Dual-Band Beam-Steering Array Antenna with Integration of Reflectarray and Phased Array,” IEEE Antennas and Wireless Propagation Letters, 22(6): 1241–1245, DOI: 10.1109/LAWP.2023.3237633.
B. Zhang, C. Jin, Q. Lv, J. Chen, and Y. Tang, 2021, “Low-RCS and Wideband Reflectarray Antenna with High Radiation Efficiency,” IEEE Transactions on Antennas and Propagation, 69(7): 4212–4216, DOI: 10.1109/TAP.2020.3044660.
R. Deng, F. Yang, S. Xu, and M. Li, 2017, “An FSS-Backed 20/30-GHz Dual-Band Circularly Polarized Reflectarray with Suppressed Mutual Coupling and Enhanced Performance,” IEEE Transactions on Antennas and Propagation, 65(2): 926–931, DOI: 10.1109/TAP.2016.2633159.
G. Perez-Palomino et al., 2015, “Design and Demonstration of an Electronically Scanned Reflectarray Antenna at 100 GHz Using Multiresonant Cells Based on Liquid Crystals,” IEEE Transactions on Antennas and Propagation, 63(8): 3722–3727, DOI: 10.1109/TAP.2015.2434421.
R. Shamsaee Malfajani and B. Abbasi Arand, 2017, “Dual-Band Orthogonally Polarized Single-Layer Reflectarray Antenna,” IEEE Transactions on Antennas and Propagation, 65(11): 6145–6150, DOI: 10.1109/TAP.2017.2754459.
M. E. Trampler, R. E. Lovato, and X. Gong, 2020, “Dual-Resonance Continuously Beam-Scanning X-Band Reflectarray Antenna,” IEEE Transactions on Antennas and Propagation, 68(8): 6080–6087, DOI: 10.1109/TAP.2020.2989559.
Y. Cao, W. Che, W. Yang, C. Fan, and Q. Xue, 2020, “Novel Wideband Polarization Rotating Metasurface Element and Its Application for Wideband Folded Reflectarray,” IEEE Transactions on Antennas and Propagation, 68(3): 2118–2127, DOI: 10.1109/TAP.2019.2948525.
B. Liu, S. W. Wong, K. W. Tam, X. Zhang, and Y. Li, 2022, “Multifunctional Orbital Angular Momentum Generator with High-Gain Low-Profile Broadband and Programmable Characteristics,” IEEE Transactions on Antennas and Propagation, 70(2): 1068–1076, DOI: 10.1109/TAP.2021.3111214.
L. Guo, P. K. Tan, and T. H. Chio, 2016, “Single-Layered Broadband Dual-Band Reflectarray with Linear Orthogonal Polarizations,” IEEE Transactions on Antennas and Propagation, 64(9): 4064–4068, DOI: 10.1109/TAP.2016.2574920.
M. Inam, M. H. Dahri, M. H. Jamaluddin, N. Seman, M. R. Kamarudin, and N. H. Sulaiman, 2019, “Design and Characterization of Millimeter Wave Planar Reflectarray Antenna for 5G Communication Systems,” International Journal of RF and Microwave Computer-Aided Engineering, 29(9). DOI: 10.1002/mmce.21804.
X. Li et al., 2021, “Broadband Electronically Scanned Reflectarray Antenna with Liquid Crystals,” IEEE Antennas and Wireless Propagation Letters, 20(3): 396–400, DOI: 10.1109/LAWP.2021.3051797.
J. A. Encinar and J. A. Zornoza, 2004, “Three-Layer Printed Reflectarrays for Contoured Beam Space Applications,” IEEE Transactions on Antennas and Propagation, 52(5): 1138–1148, DOI: 10.1109/TAP.2004.827506.
Z. Wang et al., 2023, “W-Band Broadband Circularly Polarized Reflectarray Antenna,” Electronics, 12(18), DOI: 10.3390/electronics12183849.
R. Deng, S. Xu, F. Yang, and M. Li, 2017, “A Single-Layer High-Efficiency Wideband Reflectarray Using Hybrid Design Approach,” IEEE Antennas and Wireless Propagation Letters, 16: 884–887, DOI: 10.1109/LAWP.2016.2613882.
J. Wang, Y. Zhou, S. Gao, and Q. Luo, 2020, “An Efficiency-Improved Tightly Coupled Dipole Reflectarray Antenna Using Variant-Coupling-Capacitance Method,” IEEE Access, 8: 37314–37320, DOI: 10.1109/ACCESS.2020.2973574.
B. Mohammadi et al., 2018, “Enhanced Reflectarray Antenna Using Elements with Reduced Reflection Phase Sensitivity,” IEEE Antennas and Wireless Propagation Letters, 17(7): 1334–1338, DOI: 10.1109/LAWP.2018.2845439.
S. G. Zhou et al., 2022, “A Wideband 1-Bit Reconfigurable Reflectarray Antenna at Ku-Band,” IEEE Antennas and Wireless Propagation Letters, 21(3): 566–570, DOI: 10.1109/LAWP.2021.3138438.
L. X. Wu et al., 2022, “Wideband Dual-Feed Dual-Polarized Reflectarray Antenna Using Anisotropic Metasurface,” IEEE Antennas and Wireless Propagation Letters, 21(1): 129–133, DOI: 10.1109/LAWP.2021.3121018.
D. E. Serup, G. F. Pedersen, and S. Zhang, 2022, “Dual-Band Shared Aperture Reflectarray and Patch Antenna Array for S- and Ka-Bands,” IEEE Transactions on Antennas and Propagation, 70(3): 2340–2345, DOI: 10.1109/TAP.2021.3111171.
D. E. Serup, G. F. Pedersen, and S. Zhang, 2023, “Electromagnetically Controlled Beam-Steerable Reflectarray Antenna,” IEEE Transactions on Antennas and Propagation, 71(5): 4570–4575, DOI: 10.1109/TAP.2023.3249627.