MATHEMATICAL MODELLING, NUMERICAL SIMULATION AND PARAMETRIC INVESTIGATION OF TRI-COLORED SOLAR THERMAL FLAT-PLATE COLLECTORS FOR TROPICAL CLIMATE

Authors

  • Muhamad-Ali K. Dimapalao College of Engineering, Mindanao State University – Iligan Institute of Technology (MSU-IIT), Tibanga, Iligan City, Philippines
  • Napoleon Enteria College of Engineering, Mindanao State University – Iligan Institute of Technology (MSU-IIT), Tibanga, Iligan City, Philippines

DOI:

https://doi.org/10.11113/aej.v15.22415

Keywords:

tri-colored, solar flat-plate collectors, mathematical modelling, numerical simulation, parametric investigation

Abstract

The use of non-renewable energy, especially petroleum, has cascading effects that led to the adoption of renewable energy, especially solar energy. One method of using solar energy is through the use of Solar Flat-Plate Collectors (SFPC). Flat-plate solar thermal collectors are often black in appearance due to the hue of the absorbing material, which is used to enhance solar spectrum collection. However, 85% of architects prefer non-black solar collectors, irrespective of their effects on the performance of the system. This study considers the effects of tri-colored SFPC as compared with the black ones. The results show that for three tri-colored collectors, the efficiency could reach as high as 63.57%, just as 16.75% lower than the usual black ones having 80.32% efficiency. This little difference of the tri-colored with the black ones is considerably acceptable especially if we consider their integrations, compatibility with the architectural design and to break away from the dullness of the color black, aesthetically preferable in order to attain a desirable outcome that is both architecturally and visually appealing, as well as aesthetically pleasing and technical integration.

References

Haque, Md & Bakshi, Arpita & Mobin, Fathum. 2021. Assessing The Factors Of Energy Consumption Behavior In Urban Area. Journal of Civil Engineering, Science and Technology. 12: 124-140. DOI: https://doi.org/10.33736/jcest.3976.2021

Amrutkar, S., Ghodke, S., and Patil, K. Solar flat plate collector analysis. IOSR Journal of Engineering (IOSRJEN), 2(2): 207-213. DOI: https://doi.org/10.9790/3021-0202207213

Muhammad, M. J., Muhammad, I. A., Sidik, N. A. C., Yazid, M. N. A. W. M., Mamat, R. & Najafi, G. 2016."The use of nanofluids for enhancing the thermal performance of stationary solar collectors: A review. Renewable and Sustainable Energy Reviews, 63(C): 226-236. Elsevier DOI: 10.1016/j.rser.2016.05.063.

Tripanagnostopoulos, Y, Souliotis, M., and Nousia, T. 1999. Solar collectors with colored absorbers. Solar Energy, 68(4): 343-356. DOI: https://doi.org/10.1016/S0038-092X(00)00031-1

Salem, T. 2012. Colored absorbers for solar thermal collectors: A numerical study for Lebanese buildings. 2012 International Conference on Renewable Energies for Developing Countries (REDEC). DOI: https://doi.org/10.1109/REDEC.2012.6416714

Weiss, W., Stadler, I. 2001. Façade integration - a new and promising opportunity for thermal solar collectors. Proceedings of the Industry Workshop of the IEA Solar Heating and Cooling Programme, Task 26, 2001, Delft

Anderson, T., Duke, M., & Carson, J. 2010. The effect of colour on the thermal performance of building integrated solar collectors. Solar Energy Materials and Solar Cells, 94(2): 350-354. DOI: https://doi.org/10.1016/j.solmat.2009.10.012

Anderson, T., Duke, M., and Carson, J. 2009. Performance of coloured solar collectors. The First International Conference on Applied Energy (ICAE09), (Hong Kong), January 2009.

Kalogirou, S., Tripanagnostopoulos, Y., & Souliotis, M. 2005. Performance of solar systems employing collectors with colored absorber. Energy and Buildings, 37(8), 824-835. DOI: https://doi.org/10.1016/j.enbuild.2004.10.011

Isac, L., Panait, R., Enesca, A., Bogatu, C., Perniu, D., & Duta., A. 2018, October. Development of black and red absorber coatings for solar thermal collectors. Nearly Zero Energy Communities, Springer Proceedings in Energy. DOI: https://doi.org/10.1007/978-3-319-63215-5_20

Perniu, D., Covei, M., Bogatu, C., Isac, L., Visa I., & Duta, A. 2020. Inorganic, coloured thin films for solar thermal energy convertors in sustainable buildings. Energy Efficient Building Design. 61-73, Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-40671-4_4

Mueller, T., Wagner, W., Hausner, R., Koehl, M., Herkel, S., Orel, B., & Hoefler, K. 2004, July. Colourface - coloured facades for solar heating systems and building insulation. ISES Europe 2004 (EuroSun): European Conference of the International Solar Energy Society (ISES), Freiburg im Breisgau, Germany.

AlSaqoor, S. 2014, April. The impact of aging and mechanical destruction on the performance of the flat plate solar collector in Tafila city climate in Jordan. International Journal of Engineering Research and Application. 4(4): 11-17.

Sakhrieh, A., & Al-Ghandoor, A. 2013. Experimental investigation of the performance of five types of solar collectors. Energy Conversion and Management, 65: 715-720. DOI: https://doi.org/10.1016/j.enconman.2011.12.038

Isac, L., Nicoara, L., Panait, R., Enesca, A., Perniu, D., & Duta, A. 2017, March. Alumina matrix with controlled morphology for colored spectrally selective coatings. Environmental Engineering and Management Journal, 16(3): 715-724. DOI: https://doi.org/10.30638/eemj.2017.073

Zheng, M., Wu, Y., Lin, L., Zheng, W., Qu, Y., & Lai, F. 2012. Design and analysis of colored solar selective absorbing films with three-layer structure. Surface Review and Letters, 19(5): 1250046 (7 pages). https://doi.org/10.1142/S0218625X12500461

Yang, R., Liu, J., Lin, L., Qu, y., Zheng, W., & Lai, F. 2016. Optical properties and thermal stability of colored solar selective absorbing coatings with double-layer antireflection coatings. Solar Energy, 125: 453-459. DOI: https://doi.org/10.1016/j.solener.2015.12.022

Wu, Y., Zheng, W., Lin, L., Qu, Y., & Lai, F. 2013. Colored solar selective absorbing coatings with metal Ti and dielectric AlN multilayer structure. Solar Energy Materials & Solar Cells, 115: 145-150. DOI: https://doi.org/10.1016/j.solmat.2013.03.041

Nakoa, K. M. A., Karim, M. R., Mahmood, S. L., Akhanda, M. A. R. 2011. Effect of colored absorbers on the performance of a built-in-storage type solar water heater. International Journal of Renewable Energy Research (IJRER), 232-239.

Orel, Z. C., Gunde, M. K., and Hutchins, M. G. 2005, January. Spectrally selective solar absorbers in different non-black colours. Solar Energy Materials and Solar Cells, 85(1): 41-50. DOI: https://doi.org/10.1016/j.solmat.2004.04.010

Orel, B., Spreizer, H., Vuk, A. S., Fir, M., Merlini, D., Vodlan, M., & Köhl, M. 2007. Selective paint coatings for coloured solar absorbers: Polyurethane thickness insensitive spectrally selective (TISS) paints (Part II). Solar Energy Materials & Solar Cells, 91: 108-119. DOI: https://doi.org/10.1016/j.solmat.2006.07.012

Orel, Z. C., & Gunde, M. K. 2000, April. Spectral selectivity of black and green painted surfaces. Solar Energy Materials and Solar Cells, 61 (4): 445 - 450. DOI: https://doi.org/10.1016/S0927-0248(99)00155-5

Zhu, D., Mao, F., & Zhao, S. 2012, March. The influence of oxygen in TiAlOxNy on the optical properties of colored solar-absorbing coatings. Solar Energy Materials and Solar Cells, 98: 179-184. DOI: https://doi.org/10.1016/j.solmat.2011.11.001

LinkedIn, 2024. How many colors should you use in your design? Accessed on March 26, 2024, from https://www.linkedin.com/pulse/how-many-colors-should-you-use-your-design-laurie-bend/

Tiger Color, 2021. "How many colors should you use in your designs?", 2021. Accessed on July 9, 2021, from https://www.tigercolor.com/color-lab/tips/tip-01.html.

Design Wizard, 2021. 80 Eye-Catching Color Combinations For 2021. Accessed on March 26, 2024, from https://designwizard.com/blog/colour-combination/.

Duta, A., Isac, L., Milea, A., Ienei, E., & Perniu, D. 2014. Coloured solar-thermal absorbers - a comparative analysis of cermet structures. Energy Procedia, 48: 543 - 553.

Isac, L., Enesca, A., Mihoreanu, C., Perniu, D., & Duta, A. 2014. Spectrally solar selective coatings for colored flat plate solar thermal collectors. Sustainable Energy in the Built Environment - Steps Towards nZEB, Springer Proceedings in Energy. DOI: https://doi.org/10.1007/978-3-319-09707-7_21

Chen, F., Wang, S. W., Liu, X, Ji, R., Li, Z., Chen, X., Chen, Y., & Lu, W. 2016. Colorful solar selective absorber integrated with different colored units. Optics Express, 24(2): A92-103. doi: 10.1364/OE.24.000A92. PMID: 26832602. DOI: https://doi.org/10.1364/OE.24.000A92. PMid:26832602

Orel, B., Spreizer, H., Perše, L. S., Fir, M., Vuk, A. S., Merlini, D., Vodlan, M., & Köhl, M. 2007. Silicone-based thickness insensitive spectrally selective (TISS) paints as selective paint coatings for coloured solar absorbers (Part I). Solar Energy Materials & Solar Cells, 91: 93-107. DOI: https://doi.org/10.1016/j.solmat.2006.07.013

Wang, S.-W., Chen, F., Liu, X., Wang, X., Yu, L., & Lu, W. 2013. Colored solar-thermal absorbing coatings with high absorptance. Optical Interference Coatings. OSA Technical Digest (online) (Optical Society of America), paper MC.2. DOI: https://doi.org/10.1364/OIC.2013.MC.2

Zhao, S., Zhu, D., & Ribbing, C.-G. 2011, October. Colour control and selectivity in TiAlN solar-thermal absorbers. Advances in Optical Thin Films IV. Proceedings of Society of Photo-Optical Instrumentation Engineers. 8168, 81680G. DOI: https://doi.org/10.1117/12.896591

Zhu, D., & Zhao, S. 2010. Chromaticity and optical properties of colored and black solar-thermal absorbing coatings. Solar Energy Materials & Solar Cells, 94: 1630-163. DOI: https://doi.org/10.1016/j.solmat.2010.05.019

Dan, A., Chattopadhyay, K., Barshilia, H. C., & Basu, B. 2016. Colored selective absorber coating with excellent durability. Thin Solid Films. DOI: https://doi.org/10.1016/j.tsf.2016.08.070

Sarkar, A., Sinha, S., Palai, D., Dey, A., Mallick, A. B. 2018. Delineating the role of surface characteristics on the solar selectivity of colored chromium oxide coating on 304 stainless steel substrates. Solar Energy Materials and Solar Cells, 182: 354-361. https://doi.org/10.1016/j.solmat.2018.03.043

Mu, K., Kueh, A., Shek, P.N., Mohd Haniffah, M., & Tan, B. 2020. Flow responses alteration by geometrical effects of tubercles on plates under the maximal angle of attack. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 235: 3975 - 3987. DOI: https://doi.org/10.1177/0954406220975434

Mu, K., Kueh, A., & Shek, P. 2020. Hydroelastic responses of plates with sinusoidal tubercles under perpendicularly loaded flow. Ocean Engineering, 219: 108301. DOI: https://doi.org/10.1016/j.oceaneng.2020.108301

Kemarau , R. A., & Eboy, O. V. 2021. Study Influence Of Land Cover Change In Wetland And Vegetation On Land Surface Temperature. Journal of Civil Engineering, Science and Technology, 12(2): 66-74. DOI: https://doi.org/10.33736/jcest.3970.2021

[Houston Steel Buildings. 2020. Metal Building Roof Colors and Solar Reflectance. Retrieved on May 30, 2021, from https://www.houstonsteelbuildings.net/single post/2016/07/08/metal-building-roof-colors-and-solar-reflectance

Saleh, A. May 2012. Modelling of flat-plate solar collector operation in transient states. (Doctoral dissertation), Purdue University, Fort Wayne, Indiana.

Saleh, Ahmad M., Mueller, Donald W., Abu-Mulaweh, Hosni I. 2013. [ASME 2013 International Mechanical Engineering Congress and Exposition - San Diego, California, USA (Friday 15 November 2013)] Volume 8B: Heat Transfer and Thermal Engineering - Flat-Plate Solar Collector in Transient Operation: Modeling and Measurements., V08BT09A036-. DOI: https://doi.org/10.1115/IMECE2013-62377

Zima, W., & Dziewa, P. 2011. Modelling of liquid flat-plate solar collector operation in transient states. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 225: 53-62. DOI: https://doi.org/10.1177/09576509JPE1044

Duffie, J. A., & Beckman, W. A. 2013. Solar Engineering of Thermal Processes. John Wiley & Sons. DOI: https://doi.org/10.1002/9781118671603

Kalogirou, S. A. 2004. Solar thermal collectors and applications. Progress in Energy and Combustion Science, 30(3): 231-295. DOI: https://doi.org/10.1016/j.pecs.2004.02.001

Prakash, J., & Garg, H. P. 2000. Performance evaluation of fixed and tracking solar energy concentrators. Renewable Energy, 19(1-2), 101-112.

System Advisor Model Version 2023.12.17 (SAM 2023.12.17 Revision 1, SSC 290). National Renewable Energy Laboratory. Golden, CO. Accessed May 10, 2024. https://sam.nrel.gov/download

System Advisor Model Version 2023.12.17 (SAM 2023.12.17 Revision 1, SSC 290) Website. 2024. Solar Water Heating. National Renewable Energy Laboratory. Golden, CO. Accessed May 29, 2024. https://sam.nrel.gov/solar-water-heating.html

Alternative Energy Tutorials. 2024. Flat Plate Collector. Retrieved on May 2, 2024, from http://www.alternative-energy-tutorials.com/solar-hot-water/flat-plate-collector.html

Rathi, Dushyant & Kumar, Arbind. 2016. Analytical study of the optimum mass flow rate of water in a natural circulation solar collector. Carbon: Science and Technology. 8: 103-111.

Solar365. 2024. Pipe size and fluid volume in solar thermal systems. Retrieved on May 30, 2024, from http://www.solar365.com/solar/thermal/pipe-size-and-fluid-volume-solar-thermal-systems

The Piping Engineering World. 2024. Calculation of Insulation Thickness for Pipes. Retrieved on June 2, 2024, from https://www.pipingengineer.org/calculation-of-insulation-thickness-for-pipes/

Buy Insulation Online. 2024. Nitrile Rubber Pipe Insulation. Retrieved on June 2, 2024, from https://www.buyinsulationonline.co.uk/category/nitrile-rubber-section

The Engineering ToolBox. 2024. Insulated Copper Tubes - Heat Loss. Retrieved on June 2, 2024, from https://www.engineeringtoolbox.com/copper-pipes-insulation-heat-loss-d_52.html

Comaklı, K., Cakır, U., Kaya, M., & Bakirci, K. 2012. The relation of collector and storage tank size in solar heating systems. Energy Conversion and Management, 63: 112-117. DOI: https://doi.org/10.1016/j.enconman.2012.01.031

Benhouia, A. T., Teggar, M., & Benchatti, A. 2018, March. Effect of sand as thermal damper integrated in flat plate water solar thermal collector. International Journal of Heat and Technology, 36(1): 21-25. http://iieta.org/Journals/IJHT. DOI: https://doi.org/10.18280/ijht.360103

Meena, S., Meena, C. S. & Bajpai, V. K. 2014, March. Thermal performance of flat-plate collector: an experimental study. International Journal of Engineering Research and Applications (IJERA). Special issue, 1-4 (A0104) National Conference on Advances in Engineering and Technology (AET).

Skerlic, Jasmina & Nikolić, Danijela & Cvetković, Dragan & Mišković, Aleksandar. 2018. Optimal Position of Solar Collectors: A Review. Applied Engineering Letters: Journal of Engineering and Applied Sciences. 3: 129-134. DOI: https://doi.org/10.18485/aeletters.2018.3.4.3

Solar Mirror. 2024. Table of absorptivity and emissivity of common materials and coatings. Retrieved on June 2, 2024, from http://www.solarmirror.com/fom/fom-serve/cache/43.html

Chopra, K. L., Paulson, P. D., & Dutta, V. 2004. Thin-film solar cells: an overview. Progress in Photovoltaics: Research and Applications, 12(2-3): 69-92. DOI: https://doi.org/10.1002/pip.541

Granqvist, C. G. 2007. Transparent conductors as solar energy materials: A panoramic review. Solar Energy Materials and Solar Cells, 91(17): 1529-1598. DOI: https://doi.org/10.1016/j.solmat.2007.04.031

Kalogirou, S. A. 2004. Solar thermal collectors and applications. Progress in Energy and Combustion Science, 30(3): 231-295. DOI: https://doi.org/10.1016/j.pecs.2004.02.001

Sharma, A., Tyagi, V. V., Chen, C. R., & Buddhi, D. 2009. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13(2): 318-345. DOI: https://doi.org/10.1016/j.rser.2007.10.005

Kumar, R., & Rosen, M. A. 2011. Integrated collector-storage solar water heater with extended storage unit. Energy Conversion and Management, 52(3): 1767-1773. DOI: https://doi.org/10.1016/j.applthermaleng.2010.09.021

Hestnes, A. G. 1999. Building integration of solar energy systems. Solar Energy, 67(4-6): 181-187. DOI: https://doi.org/10.1016/S0038-092X(00)00065-7

Downloads

Published

2025-02-28

Issue

Section

Articles

How to Cite

MATHEMATICAL MODELLING, NUMERICAL SIMULATION AND PARAMETRIC INVESTIGATION OF TRI-COLORED SOLAR THERMAL FLAT-PLATE COLLECTORS FOR TROPICAL CLIMATE. (2025). ASEAN Engineering Journal, 15(1), 25-40. https://doi.org/10.11113/aej.v15.22415