OPTIMIZATION OF CARRAGEENAN EXTRACTION FROM KAPPAPHYCUS ALVAREZII SEAWEED USING A FACTORIAL DESIGN STUDY

Authors

  • Azren Aida Asmawi Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Bandar Saujana Putra, Jenjarom, Selangor 42610, Malaysia
  • Muhammad Alif Farhan Mohd Yusof Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang 26300, Pahang, Malaysia
  • Muhammad Amirul Husni Abdul Hadi Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang 26300, Pahang, Malaysia
  • Khadijah Husna Abd Hamid Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang 26300, Pahang, Malaysia
  • Badhrulhisham Abdul Aziz Earth Resources and Sustainability (ERAS) Centre, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang 26300, Pahang, Malaysia
  • Nurul Aini Mohd Azman Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang 26300, Pahang, Malaysia

DOI:

https://doi.org/10.11113/jurnalteknologi.v88.22188

Keywords:

Seaweed, carrageenan, Kappaphycus alvarezii, extraction, factorial design

Abstract

Carrageenan is a sulfated polysaccharide extracted from seaweeds and is pivotal in various industries due to its gelling, thickening, and stabilizing properties. Despite its widespread use, the efficiency of carrageenan extraction significantly influences its quality and market value. This study aims to optimize the extraction process of semi-refined carrageenan from Kappaphycus alvarezii seaweed using a factorial design method, focusing on maximizing yield and film characteristics while maintaining process sustainability and cost-effectiveness. Two process parameters with optimal mechanical properties (OPT 1) and yield (OPT 2) were selected based on the predictive model generated by the factorial design analysis. The results showed that soaking time positively influences gel strength, whereas prolonged extraction time reduces gel strength. Higher extraction temperatures increase gel viscosity, whereas increased KOH concentration and extraction times lower viscosity due to structural breakdown. Besides, OPT 1 and OPT 2 film analyses show tensile strengths of 34.40 MPa and 34.52 MPa, respectively, with superior flexibility, and elongation at a break (EAB) of 31.30% outperforming commercial films (19.18%). These results highlight the films' balance of durability and adaptability, positioning them as viable and sustainable packaging alternatives.

References

Yuriz, Y., Ismail, T. N. H. T., Mohamed, I., Hassan, N. N. M. 2021. Characteristic Properties of Plastic Wastes: Possibility of Reinforcing Material for Soil. J. Teknol. 83: 127–136. https://doi.org/10.11113/jurnalteknologi.v83.14676.

Schmaltz, E., Melvin, E. C., Diana, Z., Gunady, E. F., Rittschof, D., Somarelli, J. A., Virdin, J., Dunphy-Daly, M. M. 2020. Plastic Pollution Solutions: Emerging Technologies to Prevent and Collect Marine Plastic Pollution. Environ. Int. 144: 106067. https://doi.org/10.1016/j.envint.2020.106067.

Cheng, C., Chen, S., Su, J., Zhu, M., Zhou, M., Chen, T., Han, Y. 2022. Recent Advances in Carrageenan-based Films for Food Packaging Applications. Front. Nutr. 9: 1004588. https://doi.org/10.3389/fnut.2022.1004588.

Genecya, G., Adhika, D. R., Sutrisno, W., Wungu, T. D. K. 2023. Characteristic Improvement of a Carrageenan-based Bionanocomposite Polymer Film Containing Montmorillonite as Food Packaging through the Addition of Silver and Cerium Oxide Nanoparticles. ACS Omega. 8(42): 39194–39202. https://doi.org/10.1021/acsomega.3c04575.

Ilias, M. A., Ismail, A., Othman, R. 2017. Analysis of Carrageenan Yield and Gel Strength of Kappaphycus Species in Semporna Sabah. J. Trop. Plant Physiol. 9: 14–23.

Younes, M., Aggett, P., Aguilar, F., Crebelli, R., Filipič, M., Frutos, M. J., Galtier, P., Gott, D., Gundert-Remy, U., Kuhnle, G. G., Lambré, C., Leblanc, J. C., Lillegaard, I. T., Moldeus, P., Mortensen, A., Oskarsson, A., Stankovic, I., Waalkens-Berendsen, I., Woutersen, R. A., Wright, M., Brimer, L., Lindtner, O., Mosesso, P., Christodoulidou, A., Ioannidou, S., Lodi, F., Dusemund, B. 2018. Re-evaluation of Carrageenan (E 407) and Processed Eucheuma Seaweed (E 407a) as Food Additives. EFSA J. 16: e05238. https://doi.org/10.2903/J.EFSA.2018.5238.

Thye, K. L., Wan Abdullah, W. M. A. N., Balia Yusof, Z. N., Wee, C. Y., Ong-Abdullah, J., Loh, J. Y., Cheng, W. H., Lamasudin, D. U., Lai, K. S. 2022. λ-Carrageenan Promotes Plant Growth in Banana via Enhancement of Cellular Metabolism, Nutrient Uptake, and Cellular Homeostasis. Sci. Rep. 12: 1–12. https://doi.org/10.1038/s41598-022-21909-7.

Shafie, M. H., Kamal, M. L., Zulkiflee, F. F., Hasan, S., Uyup, N. H., Abdullah, S., Mohamed Hussin, N. A., Tan, Y. C., Zafarina, Z. 2022. Application of Carrageenan Extract from Red Seaweed (Rhodophyta) in Cosmetic Products: A Review. J. Indian Chem. Soc. 99(9): 100613. https://doi.org/10.1016/j.jics.2022.100613.

Avila, L. B., Barreto, E. R. C., Moraes, C. C., Morais, M. M., da Rosa, G. S. 2022. Promising New Material for Food Packaging: An Active and Intelligent Carrageenan Film with Natural Jaboticaba Additive. Foods. 11: 1–15. https://doi.org/10.3390/foods11060792.

Gupta, N. V., Chakraborty, S., Veeranna, B., Osmani, R. A. M., Moin, A., Sastri, K. T., Sharadha, M., Ramkishan, A. 2023. Carrageenan-Based Drug Delivery Systems for Respiratory Disease. Nat. Polym. Mater. based Drug Deliv. Syst. Lung Dis. 381–395. https://doi.org/10.1007/978-981-19-7656-8_20/COVER.

Pacheco-Quito, E. M., Ruiz-Caro, R., Veiga, M. D. 2020. Carrageenan: Drug delivery Systems and Other Biomedical Applications. Mar. Drugs. 18(11): 583. https://doi.org/10.3390/md18110583.

Solorzano-Chavez, E. G., Paz-Cedeno, F. R., Ezequiel de Oliveira, L., Gelli, V. C., Monti, R., Conceição de Oliveira, S., Masarin, F. 2019. Evaluation of the Kappaphycus Alvarezii Growth under Different Environmental Conditions and Efficiency of the Enzymatic Hydrolysis of the Residue Generated in the Carrageenan Processing. Biomass and Bioenergy. 127: 105254. https://doi.org/10.1016/J.BIOMBIOE.2019.105254.

Ferdiansyah, R., Abdassah, M., Zainuddin, A., Rachmaniar, R., Chaerunisaa, A. Y. 2023. Effects of Alkaline Solvent Type and pH on Solid Physical Properties of Carrageenan from Eucheuma cottonii. Gels. 9(5): 397. https://doi.org/10.3390/GELS9050397.

Asmawi, A. A., Salim, N., Abdulmalek, E., Abdul Rahman, M. B. 2023. Size-controlled Preparation of Docetaxel- and Curcumin-loaded Nanoemulsions for Potential Pulmonary Delivery. Pharmaceutics. 15(2): 652. https://doi.org/10.3390/pharmaceutics15020652.

Ganesan, A. R., Munisamy, S., Bhat, R. 2018. Effect of Potassium Hydroxide on Rheological and Thermo-mechanical Properties of Semi-refined Carrageenan (SRC) Films. Food Biosci. 26: 104–112. https://doi.org/10.1016/J.FBIO.2018.10.003.

Heriyanto, H., Kustiningsih, I., Kartika Sari, D. 2018. The Effect of Temperature and Time of Extraction on the Quality of Semi Refined Carrageenan (SRC). MATEC Web of Conferences. 15: 01034. https://doi.org/10.1051/matecconf/201815401034.

Muñoz, J., Freile-Pelegrín, Y., Robledo, D. 2004. Mariculture of Kappaphycus alvarezii (Rhodophyta, Solieriaceae) Color Strains in Tropical Waters of Yucatán, México. Aquaculture. 239: 161–177. https://doi.org/10.1016/j.aquaculture.2004.05.043.

Abd Hamid, K. H., Jayakumar, T., Gunasegaran, S., Mohd Azman, N. A. n.d. View of Fabrication and Characterization of Semi-refined Carrageenan Films Incorporated with TiO2 Nanoparticles. J. Chem. Eng. Ind. Biotechnol. 9(1): 17. https://doi.org/10.15282/jceib.v9i1.9466.

Farhan, A., Hani, N. M. 2017. Characterization of Edible Packaging Films based on Semi-refined Kappa-carrageenan Plasticized with Glycerol and Sorbitol. Food Hydrocoll. 64: 48–58. https://doi.org/10.1016/J.FOODHYD.2016.10.034.

ASTM D882. 2012. D882 Standard Test Method for Tensile Properties of Thin Plastic Sheeting. https://www.astm.org/d0882-18.html.

Mendes, M., Cotas, J., Gutiérrez, I. B., Gonçalves, A. M. M., Critchley, A. T., Hinaloc, L. A. R. 2024. Advanced Extraction Techniques and Physicochemical Properties of Carrageenan from a Novel Kappaphycus alvarezii cultivar. Mar Drugs. 22(11): 491. https://pmc.ncbi.nlm.nih.gov/articles/PMC11595270/.

Bono, A., Anisuzzaman, S. M., Ding, O. W. 2023. Effect of Process Conditions on the Gel Viscosity and Gel Strength of Semi-refined Carrageenan (SRC) Produced from Seaweed (Kappaphycus alvarezii). J. King Saud Univ. – Eng. Sci. 26(1): 3–9. https://doi.org/10.1016/j.jksues.2012.06.001.

Kong, U., Mohammad Rawi, N. F., Tay, G. S. 2023. The Potential Applications of Reinforced Bioplastics in Various Industries: A Review. Polym. 15(10): 2399. https://doi.org/10.3390/POLYM15102399.

Boey, J. Y., Lee, C. K., Tay, G. S. 2022. Factors Affecting Mechanical Properties of Reinforced Bioplastics: A Review. Polym. 14(18): 3737. https://doi.org/10.3390/POLYM1483737.

Downloads

Published

2025-12-23

Issue

Section

Science and Engineering